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Abstract: As a model for quantum computation, quantum circuits have

found their wide applications in communications, cryptography and infor-

mation processing. In order to synthesize arbitrary quantum circuits, we

present a new type of gate called quantum multiplex rotation gate, which is

implemented by simply elementary gates. A method based on QR decom-

position and two optimization rules are proposed to decompose general

quantum circuit acting on n-qubits into quantum multiplex rotation gates.

In comparison with other synthesis algorithms by QR decomposition, our

methods achieve better performance in terms of elementary gate counts,

1.2 × 4n approximately.
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1 Introduction

As the feature size of transistors approaches atomic proportions, we cannot build

transistors in atom level, because the Heisenberg uncertainty principle of quantum

mechanics indicates that atom’s position is uncertain [1]. Therefore, a new

computational model should be proposed to replace the digital one. Among various

proposed ones, quantum computation according to the law of quantum mechanics

has superior performance than their classical counterparts to solve certain discrete

problems. In quantum computing, algorithms are commonly described by the

quantum circuit model [2]. As a result, working on synthesis methods for quantum

circuit design has received significant attentions [3].

The superposition principle of quantum mechanics reveals that quantum system

must be discussed in terms of vectors, matrices, and other linear algebraic

constructions. A quantum bit (qubit) can have any linear combination of its basic

states ðj0i; j1iÞ, as j’i ¼ �j0i þ �j1i, where α and β are complex numbers and

�k2 þ �k2 ¼ 1. A n-qubits quantum gate performs a special 2n � 2n unitary

operation on selected n qubits [1]. Therefore, the n-qubit quantum circuit can be

represented by a unitary matrix. It is reasonable to assume that the gate decom-

position may correspond to some known matrix decompositions. However, the

more important issue is how these circuits are decomposed into elementary gates

sequences, called the gate library, which is universal and consist of all one-qubit

gates and the controlled-NOT gate (CNOT). Since the physically realization of the

2-qubits gate is a much slower process than that of a one-qubit gate [4], the cost of a

quantum circuit can be realistically calculated by counting 2-qubits gates.

The QR decomposition is the first numerical matrix computation used for

quantum logic synthesis which returns a circuit containing Oðn34nÞ CNOT gates to

decompose an arbitrary n-qubit gate [5]. The work in [6] shows that the circuit

complexity could be reduced down to Oðn4nÞ. Improvements on this method have

used Gray codes to lower this gate counts to 8:7 � 4n CNOT gates approximately

[7]. A more optimized QR decomposition has led to circuit with CNOT-counts of

2 � 4n � ð2n þ 3Þ � 2n þ 2nÞ [8]. The theoretical lower bound for the number of

CNOT gates needed to realize a general unstructured n-qubits gate is jð4n �
3n � 1Þ=4j [9], but no circuit construction has been presented to our best knowl-

edge.

In this paper, we establish our library of elementary gates by choosing the one-

qubit rotation gates, CNOT, the controlled-V gate and a phase gate adjusting the

unobservable global phase. An efficient method is presented to synthesize and

optimize quantum circuits by utilizing QR decomposition. We decompose the

unitary matrix into a product of matrices, identified by a new type of gate which

we call a quantum multiplex rotation gate. In order to implement these gates, their

efficient decomposition into elementary gates is given.

2 Quantum multiplex rotation gate

The term “quantum multiplexor” was first used to refer to the circuit block

implementing a quantum conditional in Ref. [8]. The concept of uniformly con-

trolled rotation gate with efficient gates implementation was introduced in Ref. [7].
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Both works have been used in decomposition of arbitrary n-qubits gates and

initialization quantum registers. The uniformly controlled rotation gate Fk
mðRaÞ is

a sequence of 2k rotation gates, each having a different sequence of k control nodes

and the same rotation axis. Combining the two concepts, we propose a quantum

multiplex rotation gate where the rotation axes may be different.

Definition 1: We use Gk
mðRÞ to define a quantum multiplex rotation gate. The gate

consists of k-fold controller and some rotations about three-dimension vectors

as; s ¼ 1; 2; � � � ; 2k acted on qubit m. For n-qubits gate, the region of m is 1; � � � ; n, k
is 1; � � � ; n � 1, and s is 1; . . . ; 2k.

Fig. 1 shows an example of Gk
mðRÞ, where m ¼ 4, k ¼ 3. It has a sequence of 8

rotation gates which commute, each having a different sequence of 3 control nodes.

The matrix representation is

G3
4ðRÞ ¼

Ra1ð�1Þ
. .
.

Ra8ð�8Þ

0
BB@

1
CCA ð1Þ

where Rasð�sÞ; s ¼ 1; � � � ; 2k is a two-level rotation matrix, �s and as denote rotation

angle and rotation vector respectively.

Definition 2: Let Gk
mðRÞjl¼0;p¼1 denote a quantum multiplex rotation with fixed

controllers (qubit l ¼ 0, p ¼ 1). The range of values allowed for fixed controller is

1; . . . ; n � 1.

Lemma 1: For any rotation matrix Rað�Þ, there is �xRað�Þ�x ¼ Rað��Þ. The

parameter �x is one of Pauli matrices, also it is the representation matrix of NOT

gate.

Proof: From Ref. [10], the equalities Rað�Þ ¼ Rzð�ÞRyð�ÞRzð�Þ, �x�x ¼ I,

�xRzð�Þ�x ¼ Rzð��Þ, �xRyð�Þ�x ¼ Ryð��Þ hold. Then
�xRað�Þ�x ¼ �xRzð�Þ�x�xRyð�Þ�x�xRzð�Þ�x ð2Þ

¼ Rzð��ÞRyð��ÞRzð��Þ ¼ Rað��Þ:
Theorem 1: Arbitrary quantum multiplex rotation gate Gk

mðRaÞ can be decomposed

using a convertible sequence of 2k CNOTs and 2k one-qubit rotation Ra which act

on qubit m.

Proof: From definition 1, quantum multiplex rotation gate is a rotation gate with

full condition. Therefore, it can be described with if � elseif � else conditional

statement by the k control qubits. Consider the one-to-one correspondence between

Fig. 1. Definition of quantum multiplex rotation gate G3
4ðRÞ. Here

white dots represent 0, black 1.
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if � elseif � else and if � else nested statement, we can use conditional nesting

sentence to express quantum multiplex rotation gate. Fig. 2 is an example of the

decomposition of G3
4ðRaÞ.

If using the exponential form to represent rotation gates, then

Rb1ð�1ÞRb2ð�2Þ ¼ eb1�1eb2�2 ¼ eb1�1þb2�2 ¼ ea1�1 ð3Þ
�xRb1ð�1Þ�xRb2ð�2Þ ¼ Rb1ð��1ÞRb2ð�2Þ ¼ e�b1�1eb2�2 ¼ e�b1�1þb2�2 ¼ ea2�2 ð4Þ

a1, a2, b1, b2 denote rotation vectors, �1, �2, �1, �2 angles.

According to the if � elseif � else form and the if � else nested form of

Gk
mðRaÞ, we can give the expression below.

Nk

b1 � �1
..
.

b2k � �2k

0
BB@

1
CCA ¼

a1 � �1
..
.

a2k � �2k

0
BB@

1
CCA ð5Þ

The elements of 2k � 2k matrix Nk can be determined by Eq. (6).

Nk
ij ¼ ð�1Þði1�j1�i2�j2�����i

2k �j2k Þ ð6Þ
From Eq. (6) the matrix Nk is a k-bit Walsh-Hadamard matrix whose rows are

mutually orthogonal. Therefore, we acquire the invers matrix ðNkÞ�1 ¼ 2�kðNkÞT
and the objective rotation of bs, �s for any known rotation as, �s is settled.

Corollary 1: Quantum multiplex rotation Gk
mðRÞ with l-qubits fixed controllers can

be decomposed using a convertible sequence of 2 l-bit Toffoli gates and 2 quantum

multiplex rotation gates Gk�l
m ðRÞ.

Proof: We select two quantum multiplex rotation matrices R1, R2, which meet two

conditions, R1R2 ¼ I and R1�xR2�x ¼ R. If the l-qubits fixed controllers get the

fixed values, the operation acting on the target qubits is rotation R. Otherwise, there

is no operation. Therefore, the function of the decomposition is the same as the

quantum multiplex rotation matrix with l-qubits fixed controllers. Fig. 3(a) shows

how to decompose the G3
4ðRÞj1¼1;2¼0 gate.

Corollary 2: (Absorbing rules) The quantum multiplex rotation gate with fixed

controllers Gk
mðRÞjfixed controller is absorbed by the quantum multiplex rotation gate

Gk
mðRÞ.

Proof: From the definitions, the quantum multiplex rotation gate with fixed

controllers Gk
mðRÞjfixed controller is a special condition of the quantum multiplex

rotation gate Gk
mðRÞ. Therefore, it can be absorbed. An example of absorbing rules

is shown in Fig. 3(b).

Fig. 2. The efficient implementation of quantum multiplex rotation
gate G3

4ðRaÞ
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Corollary 3: (Combining rules) When two gates Gk
mðRÞjl fixed controllers and

Gk
mþ1ðRÞjl�1 fixed controllers, having the same l � 1 fixed controllers, operate on qubits

in order, there is an optimum combination between two multiple-controlled Toffoli

gates.

Proof: According to corollary 1, we decompose Gk
mðRÞjl fixed controllers and

Gk
mþ1ðRÞjl�1 fixed controllers. There appear two adjacent multiple-controlled Toffoli

gates with the same l � 1 fixed controllers. With the result in Ref. [11], there is

an optimum combing the two gates. From the dotted box in Fig. 3(c), a Toffoli gate

followed by a CNOT gate is equivalent to a Peres gate, whose cost is only 4.

3 Synthesis algorithms

Matrix decomposition is useful to synthesizing the quantum gates. The theorem of

QR factorization indicates that for each complex matrix A the equation A ¼ QR

holds, where Q is unitary matrix, R is invertible and upper triangular matrix. If A is

unitary matrix, R is diagonal matrix, and Q is a product of two-level matrices called

Givens rotation.

Theorem 2: Let x ¼ ð�1; �2; � � � ; �2kÞT ≠ 0; x 2 C2k denote a unit vector. The equal-

ities Gx ¼ es; s ¼ 1; 2; � � � ; 2k hold, where matrix G is a product of k quantum

multiplex rotation matrices and quantum multiplex rotation matrices with fixed

controllers.

Proof: Consider the case of s ¼ 1, that is, Gx ¼ e1. The dimension of x is 2k, so

we use k-bits binary to represent the position of vector elements. e1 is a standard

basis vector, that the value of the first element is 1, others are 0. Therefore, our

target position is 00 � � � 0
zfflfflffl}|fflfflffl{k

.

Firstly, we can build a quantum multiplex rotation matrix Gk�1
k to make

Gk�1
k x ¼ ð�; 0;� ; 0; � � � ;� ; 0Þ. For �1�2, let c1 ¼ j�1j

j�1j2 þ j�2j2
, s1 ¼ j�2j

j�1j2 þ j�2j2
,

Fig. 3. (a) The implementation of gate G3
4ðRÞj1¼1;2¼0. (b) An example

of absorbing rules. (c) An example of using of combining
rules, where the two gates in the dotted box can reduce as a
Peres gate
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�1 ¼ �arg�1, �2 ¼ �arg�2 constitute complex Givens transformation M1 ¼
c1e

i�1 s1e
i�2

�s1ei�2 c1e
i�1

� �
. �3�4; . . . ; �2k�1�2k can be used to generate the matrices

M2; . . . ; M2k�1 respectively by the same way as �1�2. The matrix Gk�1
k can be

determined by Eq. (7).

Gk�1
k ¼

M1

M2

. .
.

M2k�1

0
BBBBB@

1
CCCCCA ð7Þ

Gk�1
k x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�1j2 þ j�2j2

q
; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�3j2 þ j�4j2

q
; 0; � � � ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�2k�1j2 þ j�2k j2

q
; 0

� �
ð8Þ

Secondly, we can build a quantum multiplex rotation matrix with fixed control-

ler Gk�2
k�1jk¼0 to make Gk�2

k�1jk¼0ðGk�1
k xÞ ¼ ð�; 0; 0; 0;� ; 0; 0; 0; � � � ;� ; 0; 0; 0Þ. Forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j�1j2 þ j�2j2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j�3j2 þ j�4j2
p

, the Givens transformation M1 ¼ m11 m12

m21 m22

� �
can

be given by the aforementioned method. In the meantime, we can generate matrices

M2; � � �M2k�2 by other couples. Then matrix Gk�2
k�1jk¼0 is determined by Eq. (9).

Gk�2
k�1jk¼0 ¼

m11 m12

1

m21 m22

1

. .
.

0
BBBBBBBB@

1
CCCCCCCCA

ð9Þ

Gk�2
k�1jk¼0ðGk�1

k xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�1j2 þ j�2j2 þ j�3j2 þ j�4j2

q
; 0; 0; 0; � � � ;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�2k�3j2 þ j�2k�2j2 þ j�2k�1j2 þ j�2k j2

q
; 0; 0; 0

�
ð10Þ

Keeping it on, in the last step we generate matrix G0
1j2¼0;���;k¼0 to transform the

value of the element to 0, whose position is 10 � � � 0
zfflfflffl}|fflfflffl{k

. Then, the matrix G ¼
G0

1j2¼0;���;k¼0G1
2j3¼0;���;k¼0 � � �Gk�2

k�1jk¼0Gk�1
k makes Eq. (11) hold.

Gx ¼ G0
1j2¼0;���;k¼0 � � �Gk�2

k�1jk¼0Gk�1
k x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�1j2 þ j�2j2 þ � � � þ j�2k j2

q
; 0; � � � ; 0

� �
¼ e1

ð11Þ
For s ¼ 2; � � � ; 2k, the process of proof is the same as s ¼ 1, except changing the

target position.

Theorem 3: Arbitrary unitary matrix U can be decomposed into a product of a

finite number of multi-axis rotation matrices and one diagonal matrix.

Proof: Assuming U ¼ ðu1; u2; � � � ; u2kÞ is a 2k � 2k unitary matrix. The index

us; s ¼ 1; 2; � � � ; 2k denotes column vectors. There is a product of multi-axis rotation

matrices G ¼ G2k�2 � � �G2G1, which makes Eq. (12) tenable by theorem 2.
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GU ¼

1

. .
.

1

u0ð2k�1Þð2k�1Þ u0ð2k�1Þ2k

u0
2kð2k�1Þ u0

2k2k

0
BBBBBBBBB@

1
CCCCCCCCCA

ð12Þ

From the Eq. (12), the two-level matrix is a unitary matrix which can be expressed

as ei�Rað�Þ. If we product GU by a rotation matrix G2k�1, an extra diagonal matrix

Δ will be presented, that is G2k�1ðGUÞ ¼ �. Finally, U ¼ G0
1G

0
2 � � �G0

2k�2G
0
2k�1�.

As can be seen above, the quantum multiplex rotations operate non-trivially

only to vectors with binary presentations differing only in one bit. Therefore, in

order to acquiring optimum circuits, we label the column vectors of U using the

binary reflected Gray code. The implement of the proposed synthesis algorithm is

given as follows. Fig. 4 is an example to decompose an arbitrary 3-qubits quantum

circuit using quantum multiplex rotation gates.

Step 1: Transforming U ¼ ðu1; u2; � � � ; u2kÞ to a diagonal matrix � ¼ ðe1; e2; � � � ;
e2k�2�1; ei�e2k�2 ; e2k�2þ1; � � � ; e2k�1þ2k�2�1; ei�e2k�1þ2k�2 ; e2k�1þ2k�2þ1; � � � e2kÞ by using

theorem 3. The transforming sequence is in the cycle of 0 � � � � � 0 !
1 � � � � � 0 ! 1 � � � � � 1 ! 0 � � � � � 1, where � � � � � remains unchanged in the

cycle but is coded in binary reflected Gary code to keep the cycle until every vector

changes to basis vector. Afterwards, there is U ¼ G1G2 � � �G2k�2G2k�1�, where Gs,

s ¼ 1; 2; � � � ; 2k is a product of quantum multiplex rotation matrices and quantum

multiplex rotation matrices with fixed controllers. The number of both matrices is

no more than k, that is, Gs ¼ G0
1j2¼0;���;k¼0G1

2j3¼0;���;k¼0 � � �Gk�2
k�1jk¼0Gk�1

k .

Step 2: Optimizing the above circuit by absorbing rules (Corollary 2). The items in

the dotted boxes in Fig. 4 are examples of these rules, where the first gate with

fixed controllers can be assimilated by the second gate.

Step 3: Decomposing the quantum multiplex rotation gates and the quantum

multiplex rotation gates with fixed controller in the circuit using theorem 1 and

Corollary 1 respectively.

Step 4: Optimizing the above circuit by combining rules (Corollary 3), then

decomposing all the multiple-control Toffoli gates by the methods which are given

in Ref. [11].

Finally, we get a circuit which is equivalent to U and is constructed by CNOTs,

Controlled-V gates and one-qubit rotation gates.

Fig. 4. Quantum circuit equivalent to an arbitrary 3-qubits unitary
matrix U

© IEICE 2016
DOI: 10.1587/elex.13.20151089
Received December 20, 2015
Accepted February 2, 2016
Publicized February 19, 2016
Copyedited March 10, 2016

7

IEICE Electronics Express, Vol.13, No.5, 1–9



4 Algorithm analyses

In general, the performance of synthesis algorithm is always evaluated by the

number of CNOTs needed to decompose an arbitrary quantum circuits. There are

two steps needed to estimate the CNOT counts. First, we calculate the number of

quantum multiplex rotation gates and such gates with fixed controller. For n-qubits

circuits, the gate counts of the synthesis algorithm are given in Table I. Second, all

the gates may be decomposed into CNOTs and one-qubit gates using Theorem 1

and Corollary 1.

According computation result, the CNOT counts which generated by the

decomposition of the quantum multiplex rotation gates is no more than 1:2 � 4n.

For a n-bit Toffoli gate with one garbage bit, the quantum cost is 32ðn � 1Þ � 96,

n � 10 in Ref. [11]. With the results, the number of elementary gates which come

from the multiple-controlled Toffoli gates is no more than k � n2 � 2n, k � 32. We

give a comparison of elementary gate counts for n-qubits quantum circuits

generated by QR decomposition in Table II. With the value of n increasing

gradually, it can be seen that our synthesis algorithm can reach a circuit with lower

cost.

5 Conclusions

In this paper, quantum multiplex rotation gate and synthesis algorithm based QR

decomposition are proposed to synthesize and optimize an arbitrary quantum

Table I. The gate counts of the synthesis algorithm

Types of gate Gate counts

Gk
mðRas Þ 2n�1

Gk
mðRasÞj1 fixed controller 2n�1 þ 2n�2

Gk
mðRasÞj2 fixed controller 2n�1 þ 2n�2 þ 2n�3

… …

Gk
mðRasÞjn�2 fixed controller 2n�1 þ 2n�2 þ 2n�3 þ � � � þ 22 þ 21

Gk
mðRasÞjn�1 fixed controller

2n�1

4
þ 2n�2

4
þ 2n�3

4
þ � � � þ 22

4
þ 1

Table II. A comparison of elementary gates counts for n-qubits
quantum circuits

Synthesis Number of qubits and elementary gates counts

Algorithm 1 2 3 4 5 6 7 n

Original QR [5] – Oðn34nÞ
Improved QR [6] – Oðn4nÞ
QR [7] 0 4 64 536 4156 22618 108760 	8:7 � 4n

QR [8] 0 8 62 344 1642 7244 30606 	2 � 4n

QR 0 4 52 304 1520 8448 43072 	1:2 � 4n
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circuits. To evaluate the performance of the algorithm, we calculate the number of

elementary gates needed to synthesize n-qubits circuits and compare with other

algorithms based on QR. As see in Table II, our techniques achieve better known

elementary gate counts, 1:2 � 4n approximately. Our method has additional ad-

vantage that the generated circuit has small numbers of qubits and no garbage bits.

To be closer to the lower bounds, jð4n � 3n � 1Þ=4j, we need to find an efficient

numerical matrix computation to improve the algorithm in the future.
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