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Abstract: Extending the dynamic range of analog-to-digital converters

(ADCs) is an important issue in their application field. This paper presents

a novel nonlinear equalizer based on the cube coefficient subspace (CCS)

architecture to mitigate nonlinearities inherent in ADCs. The proposed

equalizer is verified with a 14-bit, 200-MSPS ADC injected a two-tone

signal. Simulation results show that it achieves a 16.55 dB improvement in

dynamic range with a computational complexity of 110 operations per

sample (OPS). The improvement using the proposed equalizer is 14.12 dB

and 2.67 dB greater than those using two conventional equalizers: the

memory polynomial (MP) and horizontal coordinate system (HCS) equal-

izers, respectively, with the same computational complexity.
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1 Introduction

The dynamic range of ADCs dominantly suffers from nonlinearities (e.g., harmon-

ics, intermodulations, spurs, etc.) [1] inherent in the converter core and the

sampling front-end of ADCs [2]. One possibility to diminish these nonlinearities

and extend the potential dynamic range is to use a nonlinear equalizer based on

Volterra filters. Volterra filters are a general technique for representing and com-

pensating arbitrary nonlinearities with memory [3]. Nevertheless, a major drawback

of this technique is that the number of coefficients in the Volterra filter grows

exponentially with the order and the memory of the ADC nonlinearity behavior

model [4]. To overcome the highly computational complexity, the memory poly-

nomial (MP) [5] and horizontal coordinate system (HCS) [6, 7, 8] architectures

for truncated Volterra filters have been proposed. Both MP and HCS consist of one-

dimensional polynomial subkernels which are selected from the full Volterra kernel.

However, compared to one-dimensional polynomial filters, multidimensional poly-

nomial filters more easily reduce asymmetric nonlinearities, and consist of fewer

subkernels [9]. The cube coefficient subspace (CCS) architecture proposed by M.

Herman et al. [9] is composed of small multidimensional hypercubes within the

whole Volterra kernel coefficient spaces. In this paper, a novel nonlinear equalizer

based on CCS for post-corrections of ADCs is proposed. Simulation results show

that the proposed equalizer yields larger dynamic range of a 14-bit, 200-MSPS

ADC than the conventional equalizer based on MP or HCS with the same

computational complexity.

2 Cube coefficient subspace

The CCS is a variant of the full Volterra filter to model the ADC nonlinearity

behavior. Hence, it is necessary to introduce the Volterra series which is the

mathematics base of Volterra filters. The Volterra series in discrete time domain

describes the relation between the input uðnÞ and output yðnÞ as

yðnÞ ¼
XP
p¼1

ypðnÞ; ð1Þ

where

ypðnÞ ¼
XM�1
m1¼0
� � �

XM�1
mp¼0

hpðm1; � � � ; mpÞ
Yp
l¼1

uðn � mlÞ: ð2Þ

Here, p is the polynomial order, P is the maximum polynomial order, M is the

memory length, hpðm1; � � � ; mpÞ are the full pth-order Volterra kernel coefficients

(also known as the full pth-order Volterra kernel) [9], and ml is the memory variable
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in the lth-dimension of the full pth-order kernel hpðm1; � � � ; mpÞ. Each partial output

ypðnÞ is the p-dimensional convolution of uðnÞ with hpðm1; � � � ; mpÞ.
The number of coefficients hpðm1; � � � ; mpÞ is Mp [5], which grows exponen-

tially with the order p. The number is so large that the full Volterra filter is

unfeasible in real time systems. Therefore, most practical Volterra filters (e.g., MP,

HCS, CCS, etc.) consist of several subkernels within the full Volterra kernel. If

hpðm1; � � � ; mpÞ ¼ 0, except along the diagonal m1 ¼ m2 � � � ¼ mp, then the full

Volterra filter becomes a one-dimensional polynomial filter MP given by [5]

yMPðnÞ ¼
XP
p¼1

XM�1
m¼0

hpðm; � � � ; mÞupðn � mÞ: ð3Þ

Here, upðn � mÞ is the pth power of the input uðnÞ with the memory variable m, and

hpðm; � � � ; mÞ is the pth-order MP kernel which is a one-dimensional subkernel

within the full pth-order kernel hpðm1; � � � ; mpÞ. The memory variables ml for

l ¼ 1; � � � ; p in hpðm1; � � � ; mpÞ are independent of each other, while the ones in

hpðm; � � � ; mÞ are equal to each other. As shown in Fig. 1, the yellow cube is the full

3rd-order Volterra kernel with memory length M. The purple line segment is the

3rd-order MP kernel, which lies along the main diagonal of yellow cube [9].

Another one-dimensional polynomial filter HCS is given by [7, 8]

ypðnÞ ¼
XMþi2�1
�2¼i2

� � �
XMþip�1
�p¼ip

yHCSp ðn; �2; � � � �pÞ ð4Þ

where

yHCSp ðn; �2; � � � ; �pÞ ¼
XMþi�1
m¼i

hpðm; �2; � � � ; �pÞuðn � mÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hpðn;�2;���;�pÞ�uðnÞ

Yp
l¼2

uðn � �lÞ: ð5Þ

Here, the symbol � denotes the convolution operator, hpðm; �2; � � � ; �pÞ is the pth-

order HCS kernel, the ik for k ¼ 1; � � � ; p are used to center the data over the taps of

the filter, and the �l for l ¼ 2; � � � ; p are fixed integer delays. The HCS is a one-

dimensional convolution multiplied by the product of time-delayed values of input

uðnÞ [7, 8]. As shown in Fig. 1, the blue line segment is the 3rd-order HCS kernel.

Fig. 1. Geometry of the 3rd-order MP, HCS, and CCS kernels.
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It only picks coefficients along a single horizontal (m) paralleling to the m1 axis,

while the other dimensions of the 3rd-order kernel ð�2; �3Þ stay fixed.

In addition, there is one more truncated Volterra filter called CCS, which is a

multidimensional polynomial filter. The output of a pth-order, d-dimensional

(d � p) CCS corresponding to a d-dimensional subkernel within the full pth-order

Volterra kernel is given by [9, 10, 11]

yCCSðp;dÞðnÞ ¼
XM�1
m1¼0
� � �

XM�1
md¼0

hpðm1; � � � ; mdÞ
Yd
l¼1

uðn � ml � �lÞ
Yp
s¼dþ1

uðn � �sÞ: ð6Þ

Here, hpðm1; � � � ; mdÞ is the pth-order, d-dimensional CCS kernel, and �t for

t ¼ 1; � � � ; p are fixed integer delays that determine the CCS kernel position in

the full Volterra kernel space. The CCS breaks the full Volterra kernel up into small

hypercubes of arbitrary dimension and polynomial order [11]. As shown in Fig. 1,

the green cube is the 3rd-order, 3-dimensional CCS kernel with memory length 2.

The computational requirements for the pth-order MP, HCS and CCS with

memory length M are shown in Table I. It seems that the amount of CCS

computational loads is larger than MP or HCS as the dimension d increases.

However, for addressing the localization of nonlinearities, using several multi-

dimensional CCS kernels can adapt coefficients in arbitrary dimensions more easily

[10].

3 Constructing the proposed equalizer

In this section, the method of constructing the proposed nonlinear equalizer based

on CCS is discussed firstly. Then we present the algorithm of selecting an optimal

set of CCS kernels, which is a key factor in constructing an efficient equalizer.

3.1 Constructing method

3.1.1 Recasting the CCS representation in matrix-vector form

To begin our discussion of construction method, we first recast Eq. (2) in vector

form as

ypðnÞ ¼ uTpðnÞhp; ð7Þ
where ð�ÞT denotes the transposition operator. The pth-order input products upðnÞ
and the full pth-order kernel coefficients hp both are Mp � 1 vectors,

Table I. The computational requirements for the pth-order MP, HCS
and CCS

Architecture
Number of
coefficients

Number of
multipliers

Number of
adders

MP M ½Mðblog2 pc þ 1Þ; Mð2blog2 pc þ 1Þ�� M � 1

HCS M M þ p � 1 M � 1

CCS Md p � d þ
Xd
l¼1

Ml Md � 1

�The symbol b� � �c denotes the floor operation.
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upðnÞ ¼ ½upðnÞ; uðn � 1Þup�1ðnÞ; � � � ; upðn �M þ 1Þ�T ; ð8Þ
and

hp ¼ ½hpð0; 0; � � � ; 0Þ; hpð1; 0; � � � ; 0Þ; � � � ; hpðM � 1; M � 1; � � � ; M � 1Þ�T : ð9Þ
Then, we recast Eq. (1) in vector form as

yðnÞ ¼ uT ðnÞh ð10Þ
Here, all input products uðnÞ from 1 to P order and the corresponding coefficients h

both are
�XP

p¼1M
p
�
� 1 vectors,

uðnÞ ¼ uT1 ðnÞ;uT2 ðnÞ; � � � ;uTPðnÞ
� �T

; ð11Þ
and

h ¼ hT1 ;h
T
2 ; � � � ;hTP

� �T
: ð12Þ

Similarly, the CCS expressed as Eq. (6) can also be recast in vector form as

yCCSðp;dÞðnÞ ¼ ½uCCSðp;dÞðnÞ�ThCCSðp;dÞ; ð13Þ
where the Md � 1 vector uCCSðp;dÞðnÞ can be represented by

uCCSðp;dÞðnÞ ¼
�Yd
l¼1

uðn � �lÞ
Yp
s¼dþ1

uðn � �sÞ;

� � � ;
Yd
l¼1

uðn �M þ 1 � �lÞ
Yp
s¼dþ1

uðn � �sÞ
�T ð14Þ

and the Md � 1 vector hCCSðp;dÞ contains the corresponding coefficients. Using N

samples of uðnÞ, we define the proposed equalizer input uðnÞ in the N � 1 vector

form as

~uðnÞ ¼ ½uðnÞ; uðn � 1Þ; � � � ; uðn � N þ 1Þ�T : ð15Þ
Then, Eq. (13) can be rewritten in matrix-vector form as

yCCSðp;dÞ ¼ UCCS
ðp;dÞh

CCS
ðp;dÞ ð16Þ

with

yCCSðp;dÞ ¼ yCCSðp;dÞðnÞ; yCCSðp;dÞðn � 1Þ; � � � ; yCCSðp;dÞðn � N þ 1Þ
h iT

ð17Þ
and

UCCS
ðp;dÞ ¼ uCCSðp;dÞðnÞ;uCCSðp;dÞðn � 1Þ; � � � ; uCCSðp;dÞðn � N þ 1Þ

h iT
; ð18Þ

where yCCSðp;dÞ is an N � 1 vector and UCCS
ðp;dÞ is an N �Md matrix. According to the

Eqs. (14), (15) and (18), we can recast the matrix UCCS
ðp;dÞ as

UCCS
ðp;dÞ ¼ ½ ~uðn � �1Þ � � � � � ~uðn � �dÞ � ~uðn � �dþ1Þ � � � � � ~uðn � �pÞ;
� � � ; ~uðn �M þ 1 � �1Þ � � � � � ~uðn �M þ 1 � �dÞ � ~uðn � �dþ1Þ � � � � � ~uðn � �pÞ�

;

ð19Þ
where the symbol � denotes the Hadamard product. We define the matrix UCCS

ðp;dÞ as
a CCS processing element (PE). In Eq. (19), the order p and dimension d fulfill

1 � d � p � P, and delay values �tðt ¼ 1; � � � ; pÞ range from G to K. The values
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of G and K are determinated by the computational complexity and the effect on

mitigating the nonlinearities inherent in ADCs. To obtain better effect on mitigating

the nonlinearities, the choice of G and K should be larger at the cost of more

computational complexity. Generally, the values of G and K could be 0 and bM=2c
to make the balance. Regard to their differences in p, d and �t, CCS PEs compose a

user-defined candidate PE set ψ, as shown in Table II. The number of PEs can be

adjusted according to the computational complexity.

3.1.2 Deriving the equalizer coefficients

We inject a two-tone signal into the ADC, which is combined with two sine-waves

whose frequencies are f1 and f2. Then the ADC output ~u is transformed as the

frequency domain representation ~yFFT by the fast Fourier transform (FFT):

~u ����!FFT
~yFFT . The amplitudes of ~yFFT at f1 and f2 are both changed to the

minimum value among all frequencies, and the modification of the vector ~yFFT is

written as ŷFFT . And then ŷFFT is reformed as the time domain representation ŷ

by the inverse FFT (IFFT): ŷFFT ����!
IFFT

ŷ. We obtain the approximate linear and

nonlinear modality ŷ in the ADC to derive the equalizer coefficients.

Next, we select CCS PEs from ψ and derive the corresponding coefficients. The

algorithm of selecting an optimal CCS PE set η is illustrated in section 3.2. We

assume that J � 1 PEs ðUCCS1
ðp1;d1Þ; . . . ;U

CCSJ�1
ðpJ�1;dJ�1ÞÞ have been selected and identified as

the optimal PEs. And then, the PE UCCSJ
ðpJ;dJÞ is selected. We combine UCCSJ

ðpJ;dJÞ with the

previous J � 1 PEs to identify whether it is optimal. The method of identification is

based on comparing the residues of the least squares solution, which is detailed in

section 3.1.3. Using these CCS PEs, the modality ŷ is given by

ŷ ¼ Ûĥ: ð20Þ
Here, Û is an N �

XJ

j¼1M
dj matrix,

Û ¼ UCCS1
ðp1;d1Þ;U

CCS2
ðp2;d2Þ; � � � ;UCCSJ

ðpJ;dJÞ
h i

; ð21Þ

and ĥ is a
�XJ

j¼1M
dj
�
� 1 vector,

Table II. The user-defined candidate processing element set ψ

p d PEs The CCS PE expression in matrix form�

1 1 UCCS
ð1;1Þ ½ ~uðn � 0 � �1Þ; ~uðn � 1 � �1Þ; � � � ; ~uðn �M þ 1 � �1Þ�N�M

1 UCCS
ð2;1Þ ½ ~uðn � 0 � �1Þ � ~uðn � �2Þ; � � � ; ~uðn �M þ 1 � �1Þ � ~uðn � �2Þ�N�M

2
2 UCCS

ð2;2Þ
½ ~uðn � 0 � �1Þ � ~uðn � 0 � �2Þ,
� � � ; ~uðn �M þ 1 � �1Þ � ~uðn �M þ 1 � �2Þ�N�M2

1 UCCS
ð3;1Þ

½ ~uðn � 0 � �1Þ � ~uðn � �2Þ � ~uðn � �3Þ,
� � � ; ~uðn �M þ 1 � �1Þ � ~uðn � �2Þ � ~uðn � �3Þ�N�M

3 2 UCCS
ð3;2Þ

½ ~uðn � 0 � �1Þ � ~uðn � 0 � �2Þ � ~uðn � �3Þ,
� � � ; ~uðn �M þ 1 � �1Þ � ~uðn �M þ 1 � �2Þ � ~uðn � �3Þ�N�M2

3 UCCS
ð3;3Þ

½ ~uðn � 0 � �1Þ � ~uðn � 0 � �2Þ � ~uðn � 0 � �3Þ,
� � � ; ~uðn �M þ 1 � �1Þ � ~uðn �M þ 1 � �2Þ � ~uðn �M þ 1 � �3Þ�N�M3

… … … …

�1 � d � p � P, G � �t � Kðt ¼ 1; � � � ; pÞ.
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ĥ ¼ hCCS1ðp1;d1Þ
� �T

; hCCS2ðp2;d2Þ
� �T

; � � � ; hCCSJðpJ;dJÞ
� �T� �T

: ð22Þ

The number of coefficients ĥ is
XJ

j¼1M
dj , which is smaller than N. The method of

calculating the coefficients ĥ is the least-squares solution. In order to avoid the ill-

conditioned problem of normal equation, we use QR decomposition to approximate

the least squares solution. The matrix Û is decomposed as

Û ¼ QR; ð23Þ
where Q is an orthogonal matrix and

Q�1 ¼ QT : ð24Þ
The combination of Eqs. (20), (23) and (24) is given by

Rĥ ¼ QT ŷ: ð25Þ
In Eq. (25), we can easily obtain the least squares solution ĥleast-squares of ĥ.

3.1.3 Identifying the equalizer architecture

Although we get the least squares solution ĥleast-squares, we cannot arbitrarily infer

that the recently selected PE UCCSJ
ðpJ;dJÞ is optimal. We must identify which CCS PE

selected in section 3.1.2 is optimal. We first present the residue of the solution

ĥleast-squares as

r ¼ ŷ � Ûĥleast-squares: ð26Þ
The identification standard is that the CCS PE whose krk2 is minimum among all

candidate CCS PEs UCCSJ
ðpJ;dJÞ (of heterogeneous delay values �t), and smaller than the

previous minimum krk2 among all candidate CCS PEs UCCSJ�1
ðpJ�1;dJ�1Þ (of heteroge-

neous delay values �t) is optimal. We repeat the CCS PE selection in section 3.1.2

until we find the optimal CCS PE set η. After obtaining the set η, the associated

matrix Ûoptimal and coefficients ĥoptimal based on the selection algorithm, we identify

Ûoptimalĥoptimal as the main body of the equalizer. It is the estimation of the ADC

linearity and nonlinearity behavior model. The equalizer output yeq is given by

yeq ¼ ~y � Ûoptimalĥoptimal; ð27Þ
where ~y is an appropriately delayed version of the ADC output ~u, as shown in

section 3.1.2. In the end, we get the equalization result yeq of the ADC.

3.2 Selecting algorithm

Like most articles [6, 8], the computational complexity is defined as operations per

sample (OPS). The total number of operations is the sum of the number of adders

and multipliers. We set the ceiling number of the OPS of the equalizer complexity

asW. The objective is to select an optimal CCS PEs set η from the candidate PEs set

ψ which is used to construct an equalizer achieving the highest performance with a

given computational complexity. As described in algorithm, we start with an empty

set of PEs. Then we select one candidate PE from the set ψ in each selection and

calculate the each 2-norm of the corresponding residue. The PE with one-dimen-

sion and one-order is selected initially. And then we successively select PEs with
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one-dimension, whose order increases by one at a time. As the order of the selected

PE exceeds P, we turn to select PEs with two-dimension and two-order. And so on,

we repeat the previous selection until the optimal PEs set η is selected. With regard

to heterogeneous delay values, PEs with the same dimension and order are different

from each other. We select the PE with the minimum 2-norm of the residue from

them and add it into the set ξ which is already selected. We terminate the algorithm

when the number of the OPS of the equalizer complexity exceeds W.

Algorithm: The selecting algorithm for the optimal CCS PE set η

Require: 1 � dj � pj � Pðj ¼ 1; � � � ; J � 1; J; � � �Þ, G � �t � Kðt ¼ 1; � � � ; PÞP
Mdj < N

1: � �, � �, j 1, dj  1, pj  1;

2: while the number of OPS is smaller than W do

3:    nfUCCSj
ðpj;djÞg;

4: for �t ¼ G to K ðt ¼ 1; � � � ; pjÞ do
5: � � [ fUCCSj

ðpj;dj;�tÞg;
6: derive the least squares solution ĥleast-squares of the coefficients ĥ

and the 2-norm of the corresponding residue rð�tÞ;
7: � �nfUCCSj

ðpj;dj;�tÞg;
8: end for

9: find the minimum krð�tÞk2 and the corresponding CCS PE

U
CCSj-optimal
ðpj;dj;�tÞ , which is a candidate optimal PE;

10: if the current minimum krð�tÞk2 is smaller than the previous then

11: � � [ fUCCSj-optimal
ðpj;dj;�tÞ g, j j þ 1;

12: end if

13: pj  pj þ 1;

14: if pj > P then

15: dj  dj þ 1, pj  dj;

16: end if

17: end while

18: � �

As we known, both linearities and nonlinearities exist in the output of the ADC.

Linearities can be easily mitigated by one dimension CCS PE and should be

mitigated firstly. Otherwise, they can mix with nonlinearities and block our path to

mitigate nonlinearities when we let them go unchecked. If we inverse the sequence

of selection, the computational burden becomes heavier for the same performance.

4 Simulation results

4.1 Simulation environments

We applied the proposed equalizer to a 14-bit 200-MSPS ADC in order to evaluate

its performance. As shown in Fig. 2, the analog outputs of two vector signal

generators were combined and injected into the ADC. A field programmable gate

array (FPGA) captured and stored data from the ADC. The ChipScope Pro

Analyzer tool transferred these data from the FPGA to the disk of a computer.

© IEICE 2016
DOI: 10.1587/elex.13.20160039
Received January 18, 2016
Accepted January 28, 2016
Publicized February 12, 2016
Copyedited March 10, 2016

8

IEICE Electronics Express, Vol.13, No.5, 1–11



Then we constructed the equalizer with the MATLAB, and injected data into the

equalizer for simulation. Specifically, the evaluation of the equalizer is performed

offline.

4.2 Performance comparison

We injected a two-tone signal into a 14-bit ADC sampling at fs (200MSPS). The

frequency of one tone f1 is 80.00MHz and another tone f2 is 82.00MHz. As shown

in Fig. 3(a), the dynamic range of the ADC without equalization is −59.57 dBFS.
While in Fig. 3(b), after equalization using the proposed equalizer based on CCS,

the dynamic range is −76.12 dBFS. It illustrates that the proposed equalizer

achieves a 16.55 dB improvement. Furthermore, as described in section 1, non-

Fig. 2. Block diagram of the ADC data acquisition

(a)

(b)

Fig. 3. (a) Before equalization. (b) After equalization using the
proposed equalizer based on CCS.
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linearities of an ADC include harmonics, intermodulations and spurs. As shown in

Fig. 3(a), all kinds of nonlinearities can be clearly distinguished by their locations

in the frequency spectrum. Table III is the summary of nonlinearities in the ADC.

Fig. 3 demonstrates that the proposed equalizer can efficiently mitigate harmonics,

intermodulations and spurs.

For comparison, we also equalized the ADC using two conventional equalizers:

the MP and HCS equalizers. As shown in Fig. 4, after equalization using the MP

and HCS equalizers, respectively, the dynamic ranges of the ADC are −62.00 dBFS
and −73.45 dBFS. Two conventional equalizers only achieve 2.43 dB and 13.88 dB

improvements, respectively.

Table III. Nonlinearities summary

Type Location in the frequency spectrum (MHz)

Harmonics Label 1: fs � 2f2 ¼ 36:00 Label 2: fs � 2f1 ¼ 40:00

Intermodulations
Label a: f2 � f1 ¼ 2:00 Label b: fs � ðf1 þ f2Þ ¼ 38:00

Label c: 2f1 � f2 ¼ 78:00 Label d: 2f2 � f1 ¼ 84:00

Spurs Label A: 0:5fs � f2 ¼ 18:00 Label B: �0:75fs þ 3f2 ¼ 96:00

(a)

(b)

Fig. 4. (a) After equalization using the conventional equalizer based on
MP. (b) After equalization using the conventional equalizer
based on HCS.
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The comparison of performance and computational complexity among three

equalizers is shown in Table IV. The optimal PE set of the CCS equalizer includes 4

one-dimension CCS PEs and 2 two-dimension CCS PEs. The polynomial order of

PEs ranges from 1 to 4. Each PE has memory length 4 in each dimension and its

delay values range from 0 to 2. Thus, the values of G and K are 0 and 2,

respectively. The MP equalizer consists of 8 first- through fourth-order PEs and

each PE has memory length 4. The HCS equalizer consists of 11 first- through

fourth-order PEs, their delay values vary from 0 to 2 and each PE has memory

length 4. Table IV shows that the dynamic range improvement using the CCS

equalizer is 14.12 dB and 2.67 dB greater than those using MP and HCS equalizers,

respectively, with the same computational complexity.

The values of the proposed equalizer coefficients are shown in Fig. 5.

5 Conclusion

In this paper, we proposed a novel nonlinear equalizer based on CCS to extend the

dynamic range of ADCs. Our equalizer is verified with a 14-bit, 200-MSPS ADC

injected a two-tone signal. Simulation results show that it can efficiently mitigate

nonlinearities (harmonics, intermodulations and spurs) inherent in the ADC. It

achieves a 16.55 dB improvement in dynamic range with a computational complex-

ity of 110OPS. The improvement using our equalizer is 14.12 dB and 2.67 dB

greater than those using two conventional equalizers: the MP and HCS equalizers,

respectively, with the same computational complexity.

Table IV. The comparison of performance and computational complexity

Equalizer Dynamic range Number of
Computational complexity

type improvement (dB) coefficients
Number of Number of Operations
multipliers adders per sample

MP 2.43 32 80 31 111

HCS 13.88 44 67 43 110

CCS 16.55 48 63 47 110

Fig. 5. The values of the proposed equalizer coefficients
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