
Γ-point group velocity of
lossy Dirac cone composite
right/left-handed
metamaterials

Shotaro Nagaia) and Atsushi Sanadab)

Graduate School of Engineering Science, Osaka University,

1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

a) s_nagai@ieee.org

b) sanada@ieee.org

Abstract: The Γ-point group velocity, vgΓ, of lossy Dirac cone composite

right/left-handed (CRLH) metamaterials is derived theoretically for the first

time based on the equivalent circuit analysis. With the balanced CRLH

condition, it is theoretically shown that vgΓ takes the maximum value of

a half of the speed of light in the background medium under the condition

where the quality factors of the resonators in the series and shunt branches in

the unit cell, Qse and Qsh, are equal, whereas under the condition of Qse ≠
Qsh, vgΓ becomes smaller with the slow wave factor of κ = (k1/2 + k−1/2)−1

where k is the quality factor ratio k = Qsh/Qse.
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1 Introduction

The Dirac cone [1, 2] is the dispersion characteristic with a linear ω-β relation at

high symmetric points in the Brillouin zone of periodic electromagnetic systems

that can be found in artificial composite right/left-handed (CRLH) metamaterial

systems [3, 4] and photonic crystals [1, 2] as well as natural electron systems such

as graphene [5]. For a lossless CRLH system, it has been found that the Dirac cone

can be realized and the group velocities take non-zero values at the Γ-point (where

� ¼ 0) when a specific condition called the balanced condition [3, 4] (recalled

later) is satisfied, whereas a bandgap appears and group velocities become always

zero at the Γ-point without the balanced condition (see Fig. 1). By exploiting the

property of the non-zero group velocity of CRLH metamaterials, epoch-making

applications such as leaky-wave antennas with broadside radiation have been

proposed [6, 7, 8, 9].

On the other hand, for lossy CRLH systems with inevitable conductor, dielec-

tric, magnetic, and radiation losses, it has been empirically or numerically shown

that the group velocities at the Γ-point still takes non-zero value with the balanced

condition [10], however, rigorous values of the Γ-point group velocities are not

given to the authors’ best knowledge. It is practically important to know the values

(a) (b)

Fig. 1. Dispersion characteristics of 2-D CRLH metamaterials. (a)
Dirac cone with the balanced condition. (b) Without the
balanced condition.
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of the Γ-point group velocities in realistic lossy systems for future wireless

applications of Dirac cone CRLH metamaterials. In this letter, an explicit form

of Γ-point group velocities is theoretically given based on an equivalent circuit

model, and properties of lossy Dirac cone CRLH metamaterials at the Γ-point are

discussed.

2 Γ-point group velocity of lossy Dirac cone CRLH systems

Let us consider a periodic lossy CRLH metamaterial whose unit cell is shown by

the equivalent circuit of Fig. 2. Possible realistic losses, R and G, are introduced in

the series and shunt branches, respectively. R represents a total loss proportional to

the magnetic field, such as the conductor loss and the magnetic material loss, for

instance. G also represents one proportional to the electric field such as dielectric

losses. R and G even include radiation losses. Based on the periodic analysis of the

circuit [11], the dispersion characteristics can be readily obtained as

cosh �p ¼ cosh �p cos �p þ j sinh �p sin �p

¼ 1 þ 1

2
fRG � XB þ jðRB þ GXÞg; ð1Þ

where � ¼ � þ j� is the propagation constant, and X and B are the reactance and

susceptance of the series and shunt branches, respectively, given by

X ¼ !LR � 1

!CL
; B ¼ !CR � 1

!LL
: ð2Þ

Under the balanced condition [3, 4]:

1ffiffiffiffiffiffiffiffiffiffiffi
LRCL

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
LLCR

p � !0; ð3Þ

where the resonant frequencies of the series and shunt resonators are degenerated at

!0, Eq. (1) near the Γ-point can be expressed with the quality factors of the series

and shunt resonators, Qse and Qsh, as

cosh �p ¼ 1 þ !2

2QseQsh

p2

v2R
ð1 þ 2jQse�Þð1 þ 2jQsh�Þ; ð4Þ

where Qse and Qsh are given by

Qse � !0LR
R

and Qsh � !0CR

G
; ð5Þ

δ is the detuning degree near !0 given by

Fig. 2. Equivalent circuit of the unit cell of lossy CRLH TLs.
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� ¼ 1

2

!

!0

� !0

!

� �
� ! � !0

!0

� �!

!0

; ð6Þ

and vR is the speed of light in the background medium defined as

vR � 1ffiffiffiffiffiffiffiffiffiffiffi
L0RC

0
R

p : ð7Þ

Here, L0R � LR=p and C0
R � CR=p are defined as per-unit-length quantities. For

instance, if the background medium is vacuum, L0R ¼ �0 and C0
R ¼ "0, then vR

becomes the speed of light c0 ¼ ð"0�0Þ�1=2.
Assuming the Γ-point (! � !0 and � � 0), and also assuming that losses are

not very large (Qse� � 1 and Qsh� � 1), we obtain the propagation constant γ near

the Γ-point from Eq. (4) as

� ffi !0

vR

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QseQsh

p þ j

ffiffiffiffiffiffiffiffi
Qsh

Qse

s
þ

ffiffiffiffiffiffiffiffi
Qse

Qsh

s !
�

( )
: ð8Þ

Therefore, the phase constant β can be obtained as

� ¼ !0

vR

ffiffiffiffiffiffiffiffi
Qsh

Qse

s
þ

ffiffiffiffiffiffiffiffi
Qse

Qsh

s !
�: ð9Þ

From Eq. (9), the Γ-point group velocity is readily obtained as

vgj� ¼ @!

@�
¼ � 1ffiffiffiffiffiffiffiffi

Qsh

Qse

s
þ

ffiffiffiffiffiffiffiffi
Qse

Qsh

s vR � ��vR; ð10Þ

where κ is defined as

� � 1ffiffiffiffiffiffiffiffi
Qsh

Qse

s
þ

ffiffiffiffiffiffiffiffi
Qse

Qsh

s : ð11Þ

It is noted from Eq. (10) that the Γ-point group velocity takes non-zero values

that are proportional to vR by the factor of κ, leading to Dirac cone dispersion

characteristics in lossy CRLH systems. In the following, the parameter κ is referred

to as the slow wave factor.

Incidentally, for the lossless case, the dispersion characteristics can be given by

letting R ¼ 0 and G ¼ 0 in Eq. (1) as

� ¼ 1

p
cos�1 1 � 1

2
XB

� �
; ð12Þ

and the Γ-point group velocity can be derived as [3, 4]

vg,losslessj� ¼ @!

@�
¼ � 1

2
vR: ð13Þ

Therefore, the slow wave factor κ is 1/2 in the lossless case.

3 Properties of the Γ-point group velocity

Let us discuss the Γ-point group velocity of Eq. (10) in detail. Since the slow wave

factor κ of Eq. (11) is a function of the ratio of the series and shunt resonators Qse

and Qsh, we introduce the quantity of the ratio of Qse and Qsh as
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k � Qsh

Qse
: ð14Þ

In this case, the slow wave factor κ is given as

� ¼ 1

ffiffiffi
k

p þ
ffiffiffi
1

k

s : ð15Þ

Fig. 3 shows the slow wave factor κ versus the ratio k. As seen in the figure, κ is a

symmetric function with k ¼ 1 and takes the same value in the cases of k ¼ k0 and
1=k0. The value of κ takes the maximum value of 1/2 when k ¼ 1, i.e.,

Qse ¼ Qsh or
LR
R

¼ CR

G
: ð16Þ

It is worth noticing that, with this condition of Eq. (16), the Γ-point group velocity

becomes maximum:

jvgj�max ¼
1

2
vR; ð17Þ

which is the same value as that in the lossless case. Incidentally, it is interesting

to note that the condition Eq. (16) is the same form as the Heviside condition

providing distortionless transmission for conventional transmission lines [11]. If the

values of Qse and Qsh differ (k ≠ 1), jvgj�max becomes smaller and waves slow

down with the factor of κ at the Γ-point.

In the following, let us show examples how dispersion diagrams near the

Γ-point change with the parameter κ. Fig. 4 shows rigorous dispersion character-

istics calculated from Eq. (1) with the slow wave factor κ as a parameter. Note that

the parameter κ is a unique parameter in this case, and the parameter kð¼ Qsh=QseÞ
is given from the inverse function of Eq. (15). It can be seen from Fig. 4 that the

absolute value of the slope of the dispersion curve at the Γ-point (� ¼ 0), j@!=@�j�
coincides with the value of κ by definition of the group velocity. The maximum

value of the slope is 1/2 when k ¼ Qsh=Qse ¼ 1, while the slope becomes smaller

Fig. 3. Slow wave factor κ versus k.

© IEICE 2016
DOI: 10.1587/elex.13.20160281
Received March 21, 2016
Accepted April 5, 2016
Publicized April 28, 2016
Copyedited May 25, 2016

5

IEICE Electronics Express, Vol.13, No.10, 1–6



than 1/2 when k ¼ Qsh=Qse ≠ 1. Apart from the Γ-point, the dispersion curves

coincide with each other even with different values of κ as seen in Fig. 4. In

summary, even in lossy CRLH systems, κ never becomes zero with the balanced

condition of Eq. (3), leading to the Dirac cone dispersion characteristics.

Incidentally, the attenuation constant α at the Γ-point is given from Eqs. (5) and

(8) as

� ¼ !0

vR

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QseQsh

p ¼
ffiffiffiffiffiffiffiffiffi
R0G0p

; ð18Þ

where R0 ¼ R=p and G0 ¼ G=p are the resistance and conductance in the series and

shunt resonators per unit length. Therefore, α is inversely proportional to the

geometric mean of Qse and Qsh and is proportional to the geometric mean of R0

and G0 at the Γ-point. This leads to the conclusion that to reduce the attenuation

constant α at the Γ-point of Dirac cone CRLH metamaterials, it is important to

reduce both R0 and G0 simultaneously.

4 Conclusions

We have derived the Γ-point group velocity in the lossy Dirac cone CRLH

metamaterials theoretically in terms of quality factors of the resonators in the series

and shunt branches, Qse and Qsh. It has been shown that the Γ-point group velocity

takes the maximum value of a half of the speed of light in the background medium

under the condition of Qse ¼ Qsh, whereas the Γ-point group velocity becomes

small under the condition of Qse ≠ Qsh with the slow wave factor of � ¼
ðk1=2 þ k�1=2Þ�1 where k is the quality factor ratio k ¼ Qsh=Qse.
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Fig. 4. Dispersion characteristics of lossy CRLH systems with the
parameter of κ. The horizontal axis is the normalized phase
constant. The vertical axis is the normalized frequency by the
Γ-point frequency.
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