
Hardware accelerated search
for resource-efficient and
secure permutation matrices

Tolga Yalçına)

Computer Engineering Dept, Food and Agriculture University, Konya, Turkey

a) tolga.yalcin@gidatarim.edu.tr

Abstract: Permutation layer is a core component of substitution-permuta-

tion network block ciphers. Its design directly affects security and resource

usage of the block cipher. It is a challenging problem to find permutation

matrices with respect to predefined trade-off targets. In our work, we

developed a hardware search engine on Xilinx Virtex-6 FPGA in order

to accelerate the search of resource-efficient and secure (maximal branch

number) 16 × 16 permutation matrices. Our engine completed the full

spectrum search in 129 hours 48 minutes and found non-involutory and

involutory permutation matrices with maximal branch number of 5 and

minimum Hamming weight (HW) of 74 and 80, respectively. To the best

of our knowledge, this is the first time that such a hardware accelerated

custom search engine has been built and full spectrum permutation matrix

search has been performed.

Keywords: hardware acceleration, FPGA, symmetric cryptography, block

cipher, permutation layer

Classification: Electron devices, circuits and modules

References

[1] M. Albrecht, et al.: CRYPTO (2014) 57 (DOI: 10.1007/978-3-662-44371-2_4).
[2] M. Albrecht, et al.: EUROCRYPT (2015) 430 (DOI: 10.1007/978-3-662-

46800-5_17).
[3] A. Bogdanov, et al.: CHES (2007) 450 (DOI: 10.1007/978-3-540-74735-2_31).
[4] D. Hong, et al.: CHES (2006) 46 (DOI: 10.1007/11894063_4).
[5] C. De Cannière, et al.: CHES (2009) 272 (DOI: 10.1007/978-3-642-04138-9_

20).
[6] Z. Gong, et al.: RFIDSec (2011) 1.
[7] C. Lim and T. Korkishko: LNCS 3786 (2006) 243 (DOI: 10.1007/11604938_

19).
[8] J. Guo, et al.: CHES (2011) 326 (DOI: 10.1007/978-3-642-23951-9_22).
[9] K. Shibutani, et al.: CHES (2011) 342.

[10] J. Daemen and V. Rijmen: IMA (2001) 222.
[11] S. Wu, et al.: SAC (2012) 355.
[12] B. Aslan and T. Sakallı: Security Commun. Networks 7 (2014) 53 (DOI:

10.1002/sec.556).

© IEICE 2016
DOI: 10.1587/elex.13.20160352
Received April 8, 2016
Accepted April 22, 2016
Publicized May 13, 2016
Copyedited November 10, 2016

1

LETTER IEICE Electronics Express, Vol.13, No.21, 1–6

http://dx.doi.org/10.1007/978-3-662-44371-2_4
http://dx.doi.org/10.1007/978-3-662-44371-2_4
http://dx.doi.org/10.1007/978-3-662-44371-2_4
http://dx.doi.org/10.1007/978-3-662-46800-5_17
http://dx.doi.org/10.1007/978-3-662-46800-5_17
http://dx.doi.org/10.1007/978-3-662-46800-5_17
http://dx.doi.org/10.1007/978-3-662-46800-5_17
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/11894063_4
http://dx.doi.org/10.1007/11894063_4
http://dx.doi.org/10.1007/11894063_4
http://dx.doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/10.1007/11604938_19
http://dx.doi.org/10.1007/11604938_19
http://dx.doi.org/10.1007/11604938_19
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1002/sec.556
http://dx.doi.org/10.1002/sec.556
http://dx.doi.org/10.1002/sec.556
http://dx.doi.org/10.1002/sec.556

1 Introduction

Hardware acceleration replaces computationally intense operations in an algorithm

with a dedicated hardware engine. Since Application Specific Integrated Circuits

(ASICs) offer very limited or even no reconfigurability, Field Programmable Gate

Arrays (FPGAs) are the logical choices as the hardware accelerator platforms. They

offer affordable prices even for low-budget researchers and their ease-of-use can

dramatically affect design and development process. In our work, we make utilize

FPGAs for hardware acceleration in solving a specific symmetric cryptography

problem, which computationally requires very high-performance.

Substitution-permutation network type of block ciphers have a non-linear

substitution layer and a linear permutation layer to provide confusion and diffusion,

respectively. Permutation operation in a block cipher can be defined as a multi-

plication of the state vector with a binary (permutation) matrix. Design of

permutation layer directly affects block cipher performance both in terms of

security and resource usage [1, 2]. Number of non-zero entries of the permutation

matrix determines cost of multiplication. One entries of a binary matrix constitute

to XOR gates in hardware. Low number of ones is desirable especially for

lightweight block ciphers [3, 4, 5, 6, 7, 8, 9].

Branch number is an integral tool for the security of a cipher. It corresponds to

the minimal number of active S-boxes for two consecutive rounds of a cipher. For

better security, we need binary matrices with higher branch number, which generally

have a large HW. In our study, we focus on the search for 16 � 16 permutation

matrices with the lowest possible HW and maximal linear/differential branch

number.

For this, we developed a simple and yet efficient search engine architecture on

hardware and found maximal branch number non-involutory and involutory

matrices with lowest HW. This is the first time that such an architecture has been

realized and a comprehensive search has been performed. We applied several

search optimizations to reduce the computational complexity from 2256 down to

247:4 and utilized high performance of our architecture to complete our search in

less than 6 days, which would otherwise take years. We also investigated the effect

of HW on actual hardware realization of the permutation layer. It should be noted

that the proposed search engine targets maximal branch number, therefore simple

permutation layers with lower costs (as in PRESENT or PRINCE) are outside the

scope of this study.

The background information and the details of our architecture are presented in

the following sections.

2 Background

We denote the field with two elements by F2 and the n-dimensional vector-space

over F2 by F
n
2, and we split the vector-space F16

2 into the nested vector-space ðF4
2Þ4

(corresponding to the application of 4 parallel S-boxes of 4 bits each) and consider

linear mappings L : ðF4
2Þ4 ! ðF4

2Þ4.
Branch number corresponds to the minimal number of active S-boxes in any

two consecutive rounds. Differential branch number and linear branch number are

© IEICE 2016
DOI: 10.1587/elex.13.20160352
Received April 8, 2016
Accepted April 22, 2016
Publicized May 13, 2016
Copyedited November 10, 2016

2

IEICE Electronics Express, Vol.13, No.21, 1–6

defined as BdðLÞ :¼ minfwt4ðxÞ þ wt4ðLðxÞÞ j x 2 ðF4
2Þ4; x ≠ 0g and BlðLÞ :¼

minfwt4ðxÞ þwt4ðL�ðxÞÞ j x 2 ðF4
2Þ4; x ≠ 0g, respectively. wt4ðxÞ is the weight

of a given vector x ¼ ðx1; . . . ; x4Þ 2 ðF4
2Þ4, xi 2 F

4
2, and is defined as wt4ðxÞ ¼

jf1 � i � 4 j xi ≠ 0gj. L� is the inverse of the adjoint linear mapping, and it

corresponds to inverse of the transposed matrix of L.

We target linear mappings with maximal branch number, which in our setting

is 5. As shown in [10], they correspond to MDS codes of length 8 and dimension 4

over F4
2. In this case, BdðLÞ ¼ BlðLÞ. Thus a maximal differential branch number

automatically ensures a maximal linear branch number. Let the matrix representa-

tion of L be given as

L ¼
A0 A1 A2 A3

A4 A5 A6 A7

A8 A9 A10 A11

A12 A13 A14 A15

0
B@

1
CA

where Ai are each 4 � 4 matrices. Theorem 4 in [11] shows that L has branch

number 5 if and only if any square block-sub-matrix of L has full rank (i.e.,

determinants of all smaller square matrices in L are non-singular).

The easiest and rather powerful way of construction mappings with branch

number 5 is to use the finite field F24 as the basis alphabet instead of the vector-

space F
4
2 only. A limited search (focusing only on cyclic matrices of this form)

results already in rather competitive non-involutory matrices with HW of only 76,

whereas the best reported involutory matrices have HW of 112 [12]. We therefore

focus our search on HW below 76 and 112 for non-involutory and involutory

matrices, respectively.

3 Proposed search engine architecture

In our search engine architecture, we check determinants of all smaller square

matrices in L. If they are all non-singular, then the linear and differential branch

number of L is 5. Smaller square matrices within L can be listed as: 4 � 4 matrices

(from A0 to A15), 8 � 8 and 12 � 12 square matrix combinations, and finally the

overall 16 � 16 matrix L. 8 � 8 and 12 � 12 square matrices can be formed as

A0 A1

A4 A5

� �
; . . . ;

A10 A11

A14 A15

� �
;

A0 A1 A2

A4 A5 A6

A8 A9 A10

 !
; . . . ;

A5 A6 A7

A9 A10 A11

A13 A14 A15

 !
:

The most straightforward approach to perform the binary matrix search

mentioned in Section 1 is to go through all possible binary matrices, which results

in an extremely high search of complexity 2256. We therefore combined nested

vector spaces explained in Section 2 and tree-search together with many optimi-

zations on a hardware-based search engine.

At first, the number of 4 � 4 matrices is minimized by taking only matrices with

a single one in each row and column (such as the identity matrix I4). There are only

24 of such matrices. An L formed using only these 4 � 4 matrices can have 64 ones

in total. However, some of the 8 � 8 and 12 � 12 matrices of such an L would be

singular. There has to be at least one non-4 4 � 4 matrix in each sub-matrix, which

corresponds to at least 7 out of 16 4 � 4 matrices with more than 4 ones. Even if

the minimum number of 5 ones are used for these 7 matrices, the least number of

ones in L will be 71. A sample configuration is

© IEICE 2016
DOI: 10.1587/elex.13.20160352
Received April 8, 2016
Accepted April 22, 2016
Publicized May 13, 2016
Copyedited November 10, 2016

3

IEICE Electronics Express, Vol.13, No.21, 1–6

5 4 4 4

4 5 4 5

4 5 5 4

4 4 5 5

0
BB@

1
CCA:

Note that this is not the only configuration for the 7 fives and 9 fours

combination1. There are 24 such combinations, out of which only 2 are relevant

as all others can be derived by row and/or column permutations of these 2

combinations. For 4 � 4 matrices with 5 ones (1 one in 3 rows/columns, and 2

ones in 1 row/column), there are 288 different matrices. The complexities are still

extremely high (�298).

In the next step, all possible combinations for L made up of smaller sub-

matrices are listed (see Table I) up to 73 ones (higher ones combinations are not

shown, as they are much more than these listed). Number of ones in each sub-

matrix ranges from 4 to 7. Since row and/or column permutations do not affect

the branch number, diagonal sub-matrices can be fixed to specific ones in order to

reduce the complexity. Placing sub-matrices with higher number of ones in the

diagonal further reduces the complexity. Now, L looks like

I5 4 4 4

4 I5 4 5

4 5 I5 4

4 4 5 I5

0
BB@

1
CCA:

Following the process of listing all possible combinations and configurations to

be checked, the search engine to check determinants was designed and imple-

mented on the target FPGA platform. It mimics the nested for-loops of a software

program. In the first for-loop, non-singularity of the first 8 � 8 matrix is checked. If

it passes, the next 8 � 8 and/or 12 � 12 matrix is checked, and so on until all square

matrices are checked. This corresponds to a tree-search. In order to check non-

singularity of each matrix combination, determinant of each square sub-matrix is

computed in parallel. This flow is implemented as shown in Fig. 1.

Here, darker squares show the fixed matrices and circled ones represent the

counters of that stage. In each stage, all possible values are checked for non-zero

determinant, singular possibilities are canceled out, and the next stage proceeds

with non-singular ones. In the end, if a matrix solution is reached where all block

sub-matrices are invertible, then a binary matrix with branch number 5 is found.

Table I. Possible placement of 1’s within L (combinations)

Number of 1’s A0A1A2A3 . . .A12A13A14A15

71 5555555444444444

72
6555555444444444
5555555544444444

7555555444444444

73
6655555444444444
6555555544444444
5555555554444444

1We refer to different matrix types (fours, fives, … etc.) to form a certain number of ones as combinations, and
different permutations of these combinations as configurations.

© IEICE 2016
DOI: 10.1587/elex.13.20160352
Received April 8, 2016
Accepted April 22, 2016
Publicized May 13, 2016
Copyedited November 10, 2016

4

IEICE Electronics Express, Vol.13, No.21, 1–6

In order to exploit parallelism and further accelerate the matrix search, two

search engines running in parallel are implemented. A simple circular scheduler

assigns jobs to each engine. Our search engine architecture is shown in Fig. 2. At

each stage of the check engine, a dual counter is kept in order to index all possible

sub-matrices of that stage. The determinant check unit computes determinant of

the indexed sub-matrix. Fixing the diagonal sub-matrices reduces the number of

possibilities for the dual counters.

The proposed search engine and hence the method is fully scalable. It is

possible to add more stages to the search chain in order to increase the matrix

dimensions – 10 stages for a 20 � 20 matrix search, 15 stages for a 24 � 24 matrix

search, and so on. Search steps up to 32 � 32 matrices are illustrated in Fig. 3. It is

also possible to run as many search engines as allowed by the resources on the

target platform in parallel. Scalable structure of the circular scheduler allows this.

In our specific case, the FPGA platform allowed up to two search engines without

any place-route and timing problems.

Furthermore, configuration ROMs and determinant check modules can be

modified in order to implement different searches. For example, we modified them

in order to search for involutory matrices only. It is also possible to replace

determinant check with sparsity check in order to search for specific sparse

matrices. Similarly, configuration ROMs can be filled with logic equations/tables,

and determinant check can be replaced with algebraic normal form computation to

search for specific S-boxes. Additionally, search speed can be adjusted by replacing

dual-counters with triple or more counters.

Fig. 1. Determinant check flow (stage by stage) for L

Fig. 2. Matrix search engine architecture

© IEICE 2016
DOI: 10.1587/elex.13.20160352
Received April 8, 2016
Accepted April 22, 2016
Publicized May 13, 2016
Copyedited November 10, 2016

5

IEICE Electronics Express, Vol.13, No.21, 1–6

4 Results and conclusion

We performed our search using a Xilinx Virtex-6 ML605 kit, which provided us

reconfigurability we needed in order to optimize our search. We used Xilinx ISE

design tools and applied several optimizations to reduce complexity of the search

from 2256 down to 247:4. With two search engines running at 200MHz and using

%57 of resources on Virtex-6 XC6VLX240T, we were able to cover the whole

search spectrum in less than one week. This is a speed-up factor of over �100
compared to a 256-node Opteron 6276 cluster. It is also a huge improvement

considering US$ 2,000 cost of an FPGA board with respect to US$ 40,000 cost of

the cluster.

This work, to the best of our knowledge, is the very first use of hardware

acceleration for designing block ciphers rather than attacking them. Using our

hardware architecture, we were able to find the most optimal 16 � 16 non-

involutory and involutory matrices with HWof “74” and “80”, respectively. Results

of our search are listed in Table II.

In our results, we also include XOR and gate equivalent (GE) counts obtained

from Synopsys DC syntheses using a 90 nm standard cell library. As can be seen,

minimum Hamming weight also corresponds to minimum area. This also applies to

MDS type matrices where permutation is performed using finite field arithmetics

instead of direct matrix multiplication [8, 9]. It should be noted that XOR count is

different from gate count, where synthesis tool further combines several XOR gates

using other combinational logic gates.

Acknowledgments

The author would like to thank Prof. Dr. Gregor Leander and Dr. Elif Bilge Kavun

for their valuable insights and contributions.

Fig. 3. Search stages up to 32 � 32 matrices

Table II. Search results

Work Hamming W. XOR count Area (GE)

LED [8] permutation matrix M (¼ A4) – 65 136.25

Piccolo [9] permutation matrix M – 58 119.75

Best non-involutory matrix (existing) 76 60 104.75

Best non-involutory matrix (this work) 74 56 99

Best involutory matrix (existing [12]) 112 66 138.25

Best involutory matrix (this work) 80 53 113

© IEICE 2016
DOI: 10.1587/elex.13.20160352
Received April 8, 2016
Accepted April 22, 2016
Publicized May 13, 2016
Copyedited November 10, 2016

6

IEICE Electronics Express, Vol.13, No.21, 1–6

