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Abstract: A multibank memory structure is introduced for mixed radix

FFT algorithms to improve the real-time performance. In this structure, only

one butterfly unit implementing mixed radix butterfly computation is re-

quired and the FFT computation keeps continuous. At last, comparisons are

made to prove that the method in this paper is valid.
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1 Introduction

It has always been recognized as very essential to digital signal processing

applications that one have available a general mixed radix FFT program which

is, at the same time, operationally efficient [1]. With the development of the

orthogonal frequency-division multiplex technique in communication systems

including DMB-T [2], LTE SC-FDMA [3], 3GPP LTE [4], et al., the mixed radix

FFT becomes practical and useful and gains more and more attentions [5, 6, 7, 8, 9,

10, 11].

Generally, pipeline architectures are adopted to improve the real-time perform-

ance of FFTs at the cost of a great of hardware [12]. Therefore, many researches

focus on memory-based architecture [9, 11], especially for mixed radix FFTs,

which is mainly discussed in this letter. A multibank memory structure is presented

because of the poor real-time performance of the in-place strategy for FFT

computation.

Ma gives an efficient scheme to improve the processing rate for radix-2 FFTs

[13]. Johnson provides a good viewpoint for multibank memory structure, but it

only works for fixed radix-r FFT [14]. The method in [9] is similar to the one [14]

which is modified to be used for mixed radix FFT. This method requires some

adders and one module computation for distributing the input data to memory

banks. A novel multibank memory structure is introduced. The key point of this

method lies in the proper distribution of the input data to keep the following

computations of FFTs and DFTs independent and parallel. Meanwhile, it needs

neither addition nor modulo computations and the hardware design is simplified.

The rest of this paper is organized as follows. In Section 2, the existing method

of accessing data address is described and its limitations are analyzed; meanwhile,

the proposed method of address access generation is presented. A modified multi-

bank memory structure is proposed in Section 3. Section 4 shows the 3780-point

FFT design as an illustrative example and gives some comparisons; moreover,

a configurable butterfly unit is discussed. Finally, conclusive remarks are provided

in Section 5.

2 Existing method for mixed radix algorithm

The definition of a DFT is XðkÞ ¼PN�1
n¼1 xðnÞWnk

N . For the size N ¼ N1N2, a method

to compute its DFT is just as follows:
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n ¼ N1n1 þ n0; n1; k0 ¼ 0; 1; . . . ; N2 � 1

k ¼ N2k1 þ k0; n0; k1 ¼ 0; 1; . . . ; N1 � 1.

�
ð1Þ

Eq. (1) shows the relationship between the indexes n and k and the index

vectors ðn1; n0Þ and ðk1; k0Þ, transforming one dimension ½0; N � 1� into two

dimensions ½0; N1 � 1� � ½0; N2 � 1�.
Similarly, if N ¼Qt

i¼1 ri
si (where ri and si mean a radix value and the

corresponding integer power for the ith stage FFT computation.) denotes the

number of points as a general case.

In the following proposed design, the mixed radix FFT algorithm proposed in

[11] based on Eq. (1) is applied regardless of the relationship between the factors

[9]. Based on this method, a proposed method with multibank memory requires less

modulo operations than the existing methods as well as improves the real-time

performance.

3 Proposed multibank memory structure for mixed radix FFT

A “pipeline & parallel” structure for multibank memory is presented to improve the

processing speed of the mixed radix FFT design. As it is about multibank memory

structure, the proper number of memory banks is first discussed and then we

analyze the distribution input data to the designated memory banks.

Let M denote the number of the memory banks. M is set to be the minimum

of the banks number keeping dataflow continuous. Therefore, the minimum of the

banks number is designed to the maximum of the radix values, i.e.,

M ¼ maxðr1; r2; . . . ; rtÞ: ð2Þ

3.1 Data distribution to banks

Here we only consider one mixed radix butterfly unit though multiple butterfly

units can further speed up FFT computation.

We assume an accumulator ACC. Suppose that ACC ¼ ðCs�1Cs�2 . . .
C2C1C0ÞjMR as an expression, which consists of s digits. Cs�1 is the most significant

digit and C0 is the least significant digit. The value of each digit for ACC will be

analyzed. Y ¼ ðXÞjMR means that Y is expressed by X in mixed radix form.

First, input data should be distributed to M memory banks. There are two

conditions to satisfy for ACC:

(1) The least significant digit of ACC is equal to M;

(2) The range of the ðs � 1Þ most significant digits of ACC in decimal is between 0

and N=M � 1.

Therefore, the expression of distributing data to banks is expressed as Eq. (3).

BankðjÞ ¼ ðCs�1Cs�2 . . .C1jÞ; j ¼ 0; 1; . . . ; M � 1: ð3Þ
The mapping, just as Fig. 1, illustrates the relationship between ACC, the bank

number and the offset address (OA) in the designated bank.

After distribution, each bank contains N=M input data. Then each bank

computes N=M-point FFT. The access address generation follows the strategy

analyzed in [11]. According to the theory of FFT, the memory banks are inde-

pendent and pipeline. For each bank, it is accessed in pipeline and one operand is
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output in one clock cycle. For the last stage, i.e. radix-M computation, the

relationship of banks is parallel. Therefore, the M operands is read out simulta-

neously for the butterfly inputs.

Finally, the computation time is discussed. In this multibank structure, the

mixed radix FFT only needs one mixed radix butterfly unit, which can keep

computation continuous. Therefore, the computation time of the butterfly unit itself

is not considered. Because read and write of the memory bank are overlapped, the

whole access time is not double of the read or write time. Here gives two common

conditions to obtain access address clock cycles (T, including read and write) of

N-point FFT.

Case 1: If modðri; rjÞ ¼ 1, (i; j 2 ½1; t� and i ≠ j), such as N ¼ 1536 or 3780,

then

T ¼
Xt
i¼1

N=ri � si

 !
þ 2 �M � 1: ð4Þ

Case 2: If N is power of 2, like N equal to 1024 or 2048, then

T ¼ N=M � s þ 2 �M � 1: ð5Þ
In Case 2, the butterfly unit is configurable for any radix. For example, radix-8

butterfly can be set into two radix-4 or four radix-2 butterflies. Thus, this technique

can shorten the computation cycles.

3.2 Multibank memory structure design

According to Eq. (2),M is 7. So 3780 data are distributed into 7 banks and there are

540 data for each bank.

According to Eq. (3), the data distributed in each bank and the corresponding

OAs are listed in Table I.

The 7 sets of data are independent of each other for the 540-point FFT. When

we compute the FFT, first of all, the pipeline structure is applied to implement the

Fig. 1. Mapping relation between ACC, the bank number and the
corresponding OA.

Table I. Distribution of 3780 input data

OA
BankðC0Þ

0 1 j 5 6

0 xð0Þ xð1Þ xðjÞ xð5Þ xð6Þ
1 xð7Þ xð8Þ xð7 þ jÞ xð12Þ xð13Þ
k xð7kÞ xð7k þ 1Þ xð7k þ jÞ xð7k þ 5Þ xð7k þ 6Þ

539 xð3773Þ xð3774Þ xð3773 þ jÞ xð3778Þ xð3779Þ
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540-point FFT computation, and then parallel structure is used for 7-point DFT

computation.

4 Comparisons of different schemes

The major advantage of the proposed method is the running time. The running time

is calculated by clock cycle. Table II lists the computation clock cycles of FFTs

with different points.

The results show that the computation cycles of the proposed method are

almost half of the ones mentioned in [9], specially for the 1536- and 3780-point

FFTs computation. If three butterfly units and 21 banks are used to compute the

3780-point FFT, the computation cycles are about 2120 and it is less 3780. Because

the FFT algorithm is based on in-place strategy, no more memory is not required to

keep the whole input data continuous.

Furthermore, a configurable butterfly unit for radix-3,4 and 5 is designed, just

as Fig. 2. In Fig. 2, three selectors, i.e. Cti, (i ¼ 0; 1; 2) and five multiplying factors,

i.e. C5k, (k ¼ 0; 1; 2; 3; 4) are designed. By configuring theses factors and input

signals, just as Table III and Table IV, three butterflies, i.e. radix-3, 4 and 5, can be

obtained. In Table III, j ¼ ffiffiffiffiffiffi�1p
. Therefore, this method can simplify the hardware

resources caused by multiple butterfly units.

Table II. Computation cycles comparisons

Points
[14] [9] Proposed

Cycle Radix Cycle Radix Cycle Radix

1024 2560 4 1024 2/8 527 2/8

1536 – – 2176 3/8 1103 3/8

2048 22528 2 2048 4/8 1039 4/8

3780 – – 12040 3/4/5/7 6036 3/4/5/7

4096 4096 8 4096 8 2063 8

Fig. 2. Configurable butterfly design.
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5 Conclusion

The aim of the discussed method in this paper is the implementation in hardware

platform, especially in FPGA. The theme of the letter is about the multi-bank

structure of the mixed radix FFT. This strategy requires neither extra memories nor

the data exchanges to avoid access conflicts, and it simplifies the structure

complexity of the FFT parallel computations. This structure supports multi-butter-

fly units which includes multiple mixed radix butterflies. If we use multi-butterfly

units, the number of the mixed radix butterflies is rk (k 2 ½1; s�) times of M. Take

3780-point FFT as an example. The minimum of memory banks is M ¼ 7 which

support one mixed radix butterfly. If two butterfly units are used, the radixes are

changed and radix-2 DFT arises which is undesirable. If the number of radix

butterfly units is three, radix-3 and radix-7 DFTs are computed for the last two

stages.

Table III. Configurable butterfly unit

Radix Ct0 Ct1 Ct2 C50 C51 C52 C53 C54

R-3 1 – 1 −1.5000 0 �j0:8660 0 0

R-4 0 1 0 0 0 1 −1 j

R-5 1 0 1 −1.2500 j0:9511 �j0:3633 0.5590 −1.5388

Table IV. Configuration for input and output data

Input data R-3 R-4 R-5 Output data R-3 R-4 R-5

x0 x0 0 x0 X0 X0 X0 X0

x1 x1 x0 x1 X1 – X3 X1

x2 0 x1 x2 X2 X2 – X2

x3 0 x3 x3 X3 X1 X2 X3

x4 x2 x2 x4 X4 – X1 X4
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