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Abstract: Reliability is an essential issue in circuits design. The method-

ology of Markova random field (MRF) provides a new way for ultra-low

supply voltage design to obtain high noise-immune performance. However,

MRF circuits have a lack of the analysis for the supply voltage. In this paper,

we use information theory to analyze the low bound of the supply voltage.

Then, we prove the MRF circuit has lower supply voltage compared to the

traditional circuit under the same output correct probability. The contribution

of this paper is providing a mathematical proof for MRF circuit from the

information theory viewpoint in low supply voltage design.

Keywords: MRF, supply voltage, information theory

Classification: Integrated circuits

References

[1] I. Wey, et al.: “Design and implementation of cost-effective probabilistic-based
noise-tolerant VLSI circuits,” IEEE Trans. Circuits Syst. I, Reg. Papers 56
(2009) 2411 (DOI: 10.1109/TCSI.2009.2015648).

[2] R. I. Bahar, et al.: “A probabilistic-based design methodology for nanoscale
computation,” ICCAD (2003) 480 (DOI: 10.1109/ICCAD.2003.159727).

[3] K. Nepal, et al.: “Designing logic circuits for probabilistic computation in the
presence of noise,” DAC (2005) 485 (DOI: 10.1145/1065579.1065706).

[4] K. Nepal, et al.: “Techniques for designing noise-tolerant multi-level
combinational circuits,” DATE (2007) 1 (DOI: 10.1109/DATE.2007.364655).

[5] I. Wey, et al.: “A 0.18=µm probabilistic-based noise-tolerate circuit design and
implementation with 28.7 dB noise-immunity improvement,” ASSCC (2006)
291 (DOI: 10.1109/ASSCC.2006.357908).

[6] T. M. Cover and J. A. Thomas: Elements of Information Theory (John Wiley &
Sons, 2012) 15.

[7] S. Z. Li: Markov Random Field Modelling in Computer Vision (Springer-
Verlag, New York, 1995) 157.

[8] P. Korkmaz: “Probabilistic CMOS (PCMOS) in the Nanoelectronics Regime,”
Ph.D Dissertation, Georgia Institute of Technology (2007).

[9] B. Sklar: Digital Communications (Prentice Hall, New York, 2001) 300.
[10] R. Hegde, et al.: “Energy-efficiency in presence of deep submicron noise,”

ICCAD (1998) 228 (DOI: 10.1145/288548.288618).© IEICE 2017
DOI: 10.1587/elex.13.20161080
Received November 2, 2016
Accepted November 22, 2016
Publicized December 8, 2016
Copyedited January 10, 2017

1

LETTER IEICE Electronics Express, Vol.14, No.1, 1–8

http://dx.doi.org/10.1109/TCSI.2009.2015648
http://dx.doi.org/10.1109/TCSI.2009.2015648
http://dx.doi.org/10.1109/TCSI.2009.2015648
http://dx.doi.org/10.1109/TCSI.2009.2015648
http://dx.doi.org/10.1109/ICCAD.2003.159727
http://dx.doi.org/10.1109/ICCAD.2003.159727
http://dx.doi.org/10.1109/ICCAD.2003.159727
http://dx.doi.org/10.1109/ICCAD.2003.159727
http://dx.doi.org/10.1145/1065579.1065706
http://dx.doi.org/10.1145/1065579.1065706
http://dx.doi.org/10.1145/1065579.1065706
http://dx.doi.org/10.1109/DATE.2007.364655
http://dx.doi.org/10.1109/DATE.2007.364655
http://dx.doi.org/10.1109/DATE.2007.364655
http://dx.doi.org/10.1109/DATE.2007.364655
http://dx.doi.org/10.1109/ASSCC.2006.357908
http://dx.doi.org/10.1109/ASSCC.2006.357908
http://dx.doi.org/10.1109/ASSCC.2006.357908
http://dx.doi.org/10.1109/ASSCC.2006.357908
http://dx.doi.org/10.1145/288548.288618
http://dx.doi.org/10.1145/288548.288618
http://dx.doi.org/10.1145/288548.288618


1 Introduction

According to Moore’s Law, the feature size of Complementary Metal Oxide

Semiconductor (CMOS) devices has been scaled down by every 18 months.

Reliability in the low supply voltage design becomes a key issue in the deep-

submicron (DSM) technologies. The characteristic of noise in DSM technologies

exhibits statistical behaviors [1]. The classic fault tolerant approaches, such as

triple-majority-redundancy (TMR), cannot effectively solve the problem of random

intrinsic noise. A probabilistic approach was proposed using the Markova Random

Field (MRF) theory [2], which provides a new perspective to design noise-immune

circuits in a statistical noisy environment. In MRF-based circuits, we do not expect

the output value (either logic ‘0’ or logic ‘1’) to be correct at all nodes and at all

time in circuits. Instead, we do expect that the joint probability distribution of

correct values has the highest likelihood. MRF-based circuits can successfully

tolerate noise only when the joint energy of correct states is lower than that of error

states. Therefore, circuits do not require perfect devices.

From the energy viewpoint, MRF-based schemes can be used to achieve the

statistical behavior of devices in DSM. However, there is no theoretical analysis for

the supply voltage of MRF circuits. The authors in references [3, 4, 5] only proved

the clique energy representations of basic elements, but did not explain clearly the

reliability of MRF-based feedback structure in ultra-low supply voltage.

In this paper, the digital circuit analysis method using information theory is

introduced. Information theory is a fundamental mathematical approach for com-

munication system analysis [6]. An alternative representation is shown in Fig. 1 for

communication channels, if a transformation block can be treated as the compo-

sition of signal processing circuits, such as NAND gates, adders or filters, where

noise represents soft errors (thermal noise, capacitive and inductive cross-talk, IR

drop and the calculation faults from the previous elements) and hard errors (the

statistical variability and defects in DSM). By the above representation, information

theory can be used to analyze circuit behaviors. The following basic concepts and

theorems are used to describe circuit design.

We then analyze the low bound of supply voltage for MRF circuits based on

information theory. Three Lemmas about the relationships between MRF circuits

and traditional CMOS circuits for the output entropy, condition entropy and mutual

information are provided. With these Lemmas, we can calculate the low bound of

supply voltage for MRF circuits. According to the analysis, we prove that MRF

circuits can achieve lower supply voltage than traditional circuits with the same

outputs correct probability. The remaining paper is organized as follows. Section II

Fig. 1. Equivalent representation of communication system
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introduces MRF circuits. A probabilistic model for MRF circuits will be proposed

in Section III. In Section IV we give our analysis for MRF circuits. The paper is

concluded in Section V.

2 Background of MRF circuits

The MRF-based circuit design methodology focuses on joint probability distribu-

tions, which expects that the likelihood of being in correct logic states is higher

than that of being in wrong states. The connection between joint probability of the

circuit and the energy function is the Hammersley-Clifford theorem [7]:

PðXÞ ¼
Y

c2C
1

Z
exp

�UcðxcÞ
kbT

� �
; ð1Þ

where X ¼ fx0; x1; . . . ; xng is the full set of nodes, and xc is a subset of nodes in

each clique c. A clique consists of subsets, which are mutually connected by edges

in MRF graph. The key optimization criterion is changed from the maximum joint

probability to the minimum clique energy according to Eq. (1). The rules of an

MRF-based design ensure the clique energy of correct logic states is lower than that

of wrong logic states:

• All the input-output states should be considered in the energy truth table. Let

fðx0; x1; . . . ; xnÞ is an operational function for the input X ¼ fx0; x1; . . . ; xng in

a same clique. f ¼ 1 when the MRF-based element operates correctly, other-

wise f ¼ 0.

• Let clique energy UcðxcÞ ¼ �P
fiðx0; x1; . . . ; xnÞ be the whole state (i repre-

sents the different input values). Then design the MRF-based elements

depending on the function of UcðxcÞ, where fi ¼ 1.

The energy truth table of an inverter shown in Fig. 2(A) is presented in Table I,

which includes both valid and invalid states. The function Uðx; yÞ ¼ �ð �xy þ x �yÞ is
the clique energy of an inverter. In Fig. 2(A) the upper NAND can achieve the

clique energy function �xy and the lower NAND is designed for x �y. The feedback

loop strengthens the input and output signals.

3 Probabilistic models of MRF circuits

Without losing generality, a MRF inverter is used for the following analysis, which

is shown in Fig. 2(A). Fig. 2(B) is our analysis model of the MRF inverter, which

has the main part (upper NAND) and feedback part. The value of two inputs of

main NAND satisfies the truth table shown in Table II, which makes the two input

Table I. Energy truth table of an inverter

Input
x

Output
y

State Uðx; yÞ ¼ �ð �xy þ x �yÞ

0 0 Invalid 0

0 1 Valid −1
1 0 Valid −1
1 1 Invalid 0
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NAND become an inverter since the output y and input x satisfy function of the

inverter.

We use the probabilistic CMOS concept to model the devices [8], which

regards errors as a source coupling input or output. Thus, for the MRF inverter,

we let px 2 ½0; 1� be the correct probability coupling to the input x, for which the Vx

represents the value. Let pf 2 ½0; 1� be the correct probability coupling to input of

feedback port, for which the Vfeedback represents the value. We assume Vout as the

value of output port yinv shown in Fig. 2(B). We now obtain the probabilities:

p00 ¼ px þ pf � px � pf, p11 ¼ px � pf, where the correct probability is

p00 ¼ pðVout ¼ 1jVxVfeedback ¼ 00ÞNAND;
p11 ¼ pðVout ¼ 0jVxVfeedback ¼ 11ÞNAND:

Then there is the following relationship

p00 � p11: ð2Þ
For a CMOS inverter, let p 2 ½0; 1� be the correct probability coupling input of the

inverter, then we can obtain the probabilities:

p0 ¼ p1 ¼ p; ð3Þ
where p0 ¼ pðVin ¼ 0; Vout ¼ 1Þinv, p1 ¼ pðVin ¼ 1; Vout ¼ 0Þinv.

By the construction, we can obtain the following representations

pCMOS ¼ p; pMRF ¼ 1

2
ðp00 þ p11Þ: ð4Þ

4 Analysis of MRF circuit based on information theory

In this section, we prove three lemmas about the relationships between MRF

approach and traditional approach for the output entropy, condition entropy and

mutual information in the condition that they can achieve the same output correct

Fig. 2. MRF inverter and analysis model (A) A MRF inverter (B) The
analysis model of the MRF inverter.

Table II. Truth table of a MRF-based inverter

Truth table
Value of input Value of

x feedback output

NAND-based 0 0 1

inverter 1 1 0
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probability. We also provide the method for the comparison of supply voltage

between two approaches.

Lemma1: For the same input X ¼ fx0; x1g, ðx0 ¼ 0; x1 ¼ 1Þ and input HðXÞ, the
output entropy for Y ¼ fy0; y1g, ðy0 ¼ 0; y1 ¼ 1Þ satisfies:

HðYCMOSÞ � HðYMRFÞ:
Prove: Let the input sequence obey Bernoulli distribution shown in Table III, In

the noise condition, the output probability of a MRF and a CMOS inverter for being

one and zero are shown in Table III. We can obtain the following relationships from

Eq. (2)

pðy0 ¼ 0ÞBC � 1

2
; pðy1 ¼ 1ÞBC � 1

2
: ð5Þ

The inequality of entropy satisfies HðYCMOSÞ � HðYMRFÞ, since the entropy HðXÞ
is a concave function which has the maximum uncertainty HðXÞ ¼ 1 bit when

p ¼ 0:5, and the minimum value 0 when p ¼ 0 or 1. Q.E.D

From Lemma1, we found that the uncertainty of CMOS is larger than that of MRF,

which means the MRF approach can reduce uncertainty.

Lemma2: For the same input X and input HðXÞ, the condition entropy satisfies:

HðYCMOSjXÞ � HðYMRF jXÞ:
Prove: The joint probability distribution is shown in Table IV. From the condi-

tional entropy definition in [6], we can obtain the following condition entropies

HðYCMOSjXÞ ¼ HðpÞ
HðYMRF jXÞ ¼ 1

2
Hðp00Þ þ 1

2
Hðp11Þ; ð6Þ

where

HðpÞ ¼ �p � log2ðpÞ � ð1 � pÞ log2ð1 � pÞ
Hðp00Þ ¼ �p00 � log2ðp00Þ � ð1 � p00Þ log2ð1 � p00Þ
Hðp11Þ ¼ �p11 � log2ðp11Þ � ð1 � p11Þ log2ð1 � p11Þ

: ð7Þ

Table III. Input and output probability distribution

Probability 0 1

pðXÞ 1

2

1

2

pðYCMOSÞ 1

2

1

2

pðYMRF Þ 1

2
� 1

2
ðp00 � p11Þ 1

2
� 1

2
ðp11 � p00Þ

Table IV. Joint probability distribution

Joint probability ð0; 0Þ ð0; 1Þ ð1; 0Þ ð1; 1Þ

pðX;YÞCMOS
1

2
ð1 � pÞ 1

2
p

1

2
p

1

2
ð1 � pÞ

pðX;YÞMRF
1

2
ð1 � p00Þ 1

2
p00

1

2
p11

1

2
ð1 � p11Þ
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Since the two approaches have the same output correct probability, which means

p ¼ 1

2
ðp00 þ p11Þ; ð8Þ

According to Jensen inequality, the two entropy functions satisfy

H½�p00 þ ð1 � �Þp11� � �Hðp00Þ þ ð1 � �ÞHðp11Þ:

Where ¡ is a real number and � 2 ½0; 1�. Let � ¼ 1

2
, we have HðpÞ �

1

2
Hðp00Þ þ 1

2
Hðp11Þ. Q.E.D

Lemma2 represents the residual uncertainty knowledge of Y for CMOS circuits

which is larger than that for MRF circuits when X is given. Thus, the MRF

approach can reduce residual in uncertainty.

Lemma3: For the same input X and input HðXÞ, the mutual information satisfy:

IðYCMOS; XÞ � IðYMRF ; XÞ:
Prove: From the definition:

HðX;YÞ ¼ HðXÞ � HðXjYÞ; ð9Þ
IðX;YÞ ¼ HðYÞ � HðYjXÞ; ð10Þ

and HðYCMOSÞ ¼ 1, HðYCMOSjXÞ ¼ HðpÞ in Eq. (6), we obtain CMOS mutual

information

IðX;YCMOSÞ ¼ 1 � HðpÞ ¼ 1 � H
1

2
ðp00 þ p11Þ

� �
: ð11Þ

Based on HðYMRFÞ ¼ H
1

2
� 1

2
ðp11 � p00Þ

� �
shown in Table II and the function

HðYMRF jXÞ ¼ 1

2
Hðp00Þ þ 1

2
Hðp11Þ in Eq. (6), we obtain MRF mutual information

IðX;YMRFÞ ¼ H
1

2
� 1

2
ðp11 � p00Þ

� �
� 1

2
Hðp00Þ þ 1

2
Hðp11Þ

� �
: ð12Þ

To compare the relationship between IðX;YCMOSÞ and IðX;YMRFÞ, we assume

the auxiliary function as Fðp00; p11Þ ¼ IðX;YCMOSÞ � IðX;YMRFÞ, when the first-

order partial derivative equals to zero:

@F

@P00

¼ 1

2
log2

1

2
ðp00 þ p11Þ

1 � 1

2
ðp00 þ p11Þ

2
64

3
75 þ 1

2
log2

1=2 þ 1=2ðp00 � p11Þ
1=2 � 1=2ðp00 � p11Þ �

1 � p00

p00

� �
¼ 0

@F

@P11

¼ 1

2
log2

1

2
ðp00 þ p11Þ

1 � 1

2
ðp00 þ p11Þ

2
64

3
75 þ 1

2
log2

1=2 � 1=2ðp00 � p11Þ
1=2 þ 1=2ðp00 � p11Þ �

1 � p11

p11

� �
¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

:

We can obtain the solution p00 þ p11 ¼ 1. Thus Fðp00; p11Þ ¼ 0, which is the

stagnation point of the auxiliary function. Afterthen, we extend auxiliary function

using the Taylor’s formula at ðp00; 1 � p00Þ
�F ¼ Fðp00 þ h; 1 � p00 þ kÞ � Fðp00; 1 � p00Þ

¼ 1

2
½Ah2 þ 2Bhk þ Dk2� þ 1

2
½�h2 þ 2�hk þ �k2�

; ð13Þ© IEICE 2017
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where ¡, ¢, £ are infinitesimals when 8h; k ! 0 and A, B, D are parameters, which

satisfy the function below:

@Fðp00 þ h; 1 � p00 þ kÞ
@p00

2
¼ A þ �

@Fðp00 þ h; 1 � p00 þ kÞ
@p00@p11

¼ B þ �

@Fðp00 þ h; 1 � p00 þ kÞ
@p11

2
¼ D þ �

8>>>>>>>><
>>>>>>>>:

: ð14Þ

From the second order-order partial derivative, we have the following relationships

A ¼ B ¼ D ¼ In2 1 � 1

4p00

� 1

4ð1 � p00Þ
� �

� 0 and AD � B2 ¼ 0:

Then, �F ¼ 1

A
ðAh þ BkÞ2 þ oð�2Þ can be determined by A. When A ¼ 0,

Fðp00; p11Þ ¼ 0 will have the maximum value at p00 ¼ p11 ¼ 0:5. When A < 0,

Fðp00; p11Þ ¼ 0 will be the maximum at ðp00; 1 � p00Þ. From the Lemma, we can

find that the reduction in uncertainty of CMOS is smaller than that of MRF for

given X. Q.E.D

From Lemma3, we found the gate in MRF is asymmetric (p00 � p11), which leads

to the 1 ¼ HðYCMOSÞ � HðYMRFÞ. This allows us to derive the mutual information

relationship which means the reduction in uncertainty of CMOS for Y is smaller

than that of MRF due to the knowledge of X.

Let the transformation function is a MRF or CMOS operation. Then we can use

information theory to analyze circuit behaviors shown in Fig. 1.

Theorem1 when the two approaches have the same inputs, load capacitance and

same performance of Channel (channel capacity C), the supply voltage satisfies:

Vdd�CMOS � Vdd�MRF :

Prove: [9] shows that it is possible to achieve an error free information transfer

with an information transfer rate R for digital module if the constraint C > R can

be satisfied. The channel capacity of the digital circuits is given by C ¼ Cufc where

the channel capacity of per use Cu is defined as Cu ¼ max
8pðxÞ

IðX;YÞ and the rate

of channel is fc (in Hz), for which fc ¼ kmðVdd � VtÞ2
VddL

with km being the trans-

conductance of NMOS/PMOS, Vdd being supply voltage, Vt being threshold

voltage and L being the load capacitance in [10]. Thus the constraint can be

replaced with a more general representation for a noisy gate by IðX; YÞ fc � R,

when channel capacity is the same. From Lemma3 and IðX;YÞ fc � R we can

obtain fc�CMOS � fc�MRF . When the two approaches have same load capacitance,

we have Vdd�CMOS � Vdd�MRF . Q.E.D

Corollary1 when the two approaches have the same inputs, load capacitance and

same performance of channel (channel capacity C), the � ¼ C � R satisfies:

�MRF � �CMOS :

Prove: when the two approaches have same inputs, the input symbol rate

fs�CMOS ¼ fs�MRF . Since the information transfer rate R ¼ fs � IðX; YÞ, where fs
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is the channel symbol rate. Thus, we can obtain RCMOS � RMRF . When channel

capacity C is the same, then �MRF � �CMOS . Q.E.D

Based on the information theory, if the circuit operation is regarded as a channel

coding processing, smaller delta (� ¼ C � R) represents higher performance or

coding efficiency since smaller delta means that R is loser to the channel capacity.

When Vth � Vdd the supply voltage is

Vdd � R � L
IðX;YÞ � km : ð15Þ

Example Assume p00 ¼ 0:8, p11 ¼ 0:6, then p ¼ 0:7. For one bit signal passing

the CMOS inverter: HðYCMOSÞ > HðYMRFÞ, HðYCMOSjXÞ � HðYMRF jXÞ,
IðYCMOS; XÞ � IðYMRF ; XÞ.

We assume that CL ¼ 6 fF, km ¼ 80 uA/V2 and channel capacity C ¼
1:55Gbits/sec. For a 65 nm CMOS inverter with Vth ¼ 0:18V, if the fc�CMOS ¼
13G use/sec, the supply voltage should be Vdd�CMOS ¼ 1:26V. At the same con-

dition to achieve the same final correct probability the MRF inverter only need

supply voltage Vdd�MRF ¼ 0:46V with fc�MRF ¼ 2:45G use/sec.

5 Conclusions

In this paper, we use information theory to analysis the low bound of supply

voltage. Based on our proofs, the lower bound of MRF circuit is lower than that of

CMOS circuit. For error tolerant circuit design, to achieve the same performance,

the MRF circuit can save more power consumption. Therefore, the MRF method-

ology can be one of an optimal chooses in noise-immune circuits design.
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