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Abstract: Digital phase locked-loop (DPLL) is a circuit system for fre-

quency synchronization, and unbiased finite memory DPLL (UFMDPLL) is

DPLL using a finite impulse response (FIR) filter for phase detection. This

letter proposes a novel method for finding the optimal horizon size, which is

a key design parameter of UFMDPLL, based on the minimization of the

estimation error variance. The effectiveness and efficiency of the proposed

method are demonstrated in comparisons using the conventional Monte

Carlo simulation method.
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1 Introduction

A phased-locked loop (PLL) is an electronic circuit system that synchronizes its

output signal frequency with its input signal frequency [1]. PLLs have been widely

used for various purposes, such as clock synchronization in computer systems and

© IEICE 2017
DOI: 10.1587/elex.14.20161184
Received November 30, 2016
Accepted December 15, 2016
Publicized January 13, 2017
Copyedited February 10, 2017

2

IEICE Electronics Express, Vol.14, No.3, 1–9

http://dx.doi.org/10.1109/82.598428
http://dx.doi.org/10.1109/82.598428
http://dx.doi.org/10.1109/82.598428
http://dx.doi.org/10.1109/26.650226
http://dx.doi.org/10.1109/26.650226
http://dx.doi.org/10.1109/26.650226
http://dx.doi.org/10.1109/TCSII.2016.2531138
http://dx.doi.org/10.1109/TCSII.2016.2531138
http://dx.doi.org/10.1109/TCSII.2016.2531138
http://dx.doi.org/10.1109/TCSII.2016.2531138
http://dx.doi.org/10.1109/LSP.2016.2542291
http://dx.doi.org/10.1109/LSP.2016.2542291
http://dx.doi.org/10.1109/LSP.2016.2542291
http://dx.doi.org/10.1109/LSP.2016.2542291
http://dx.doi.org/10.1109/LSP.2014.2368777
http://dx.doi.org/10.1109/LSP.2014.2368777
http://dx.doi.org/10.1109/LSP.2014.2368777
http://dx.doi.org/10.1109/LSP.2014.2368777
http://dx.doi.org/10.1109/TSP.2008.2010640
http://dx.doi.org/10.1109/TSP.2008.2010640
http://dx.doi.org/10.1109/TSP.2008.2010640
http://dx.doi.org/10.1109/TSP.2008.2010640
http://dx.doi.org/10.1109/TSP.2010.2045422
http://dx.doi.org/10.1109/TSP.2010.2045422
http://dx.doi.org/10.1109/TSP.2010.2045422
http://dx.doi.org/10.1109/TSP.2010.2045422
http://dx.doi.org/10.1109/TSP.2010.2045422
http://dx.doi.org/10.1049/iet-spr.2010.0285
http://dx.doi.org/10.1049/iet-spr.2010.0285
http://dx.doi.org/10.1049/iet-spr.2010.0285
http://dx.doi.org/10.1049/iet-spr.2010.0285
http://dx.doi.org/10.1109/TSP.2013.2290504
http://dx.doi.org/10.1109/TSP.2013.2290504
http://dx.doi.org/10.1109/TSP.2013.2290504
http://dx.doi.org/10.1109/TSP.2013.2290504
http://dx.doi.org/10.1109/TCSI.2016.2573281
http://dx.doi.org/10.1109/TCSI.2016.2573281
http://dx.doi.org/10.1109/TCSI.2016.2573281
http://dx.doi.org/10.1109/TCSI.2016.2573281
http://dx.doi.org/10.1109/TAC.2015.2398887
http://dx.doi.org/10.1109/TAC.2015.2398887
http://dx.doi.org/10.1109/TAC.2015.2398887
http://dx.doi.org/10.1109/TAC.2015.2398887
http://dx.doi.org/10.1109/TAC.2015.2398887
http://dx.doi.org/10.1109/TAC.2015.2398887
http://dx.doi.org/10.1109/TAC.2015.2398887
http://dx.doi.org/10.1109/TAC.2015.2398887
http://dx.doi.org/10.1109/TCST.2015.2472990
http://dx.doi.org/10.1109/TCST.2015.2472990
http://dx.doi.org/10.1109/TCST.2015.2472990
http://dx.doi.org/10.1109/TCST.2015.2472990
http://dx.doi.org/10.1016/j.neucom.2016.07.047
http://dx.doi.org/10.1016/j.neucom.2016.07.047
http://dx.doi.org/10.1016/j.neucom.2016.07.047
http://dx.doi.org/10.1016/j.neucom.2016.07.047
http://dx.doi.org/10.1016/j.neucom.2016.07.047
http://dx.doi.org/10.1016/j.neucom.2016.07.047
http://dx.doi.org/10.1016/j.measurement.2014.07.007
http://dx.doi.org/10.1016/j.measurement.2014.07.007
http://dx.doi.org/10.1016/j.measurement.2014.07.007
http://dx.doi.org/10.1016/j.measurement.2014.07.007
http://dx.doi.org/10.1016/j.measurement.2014.07.007
http://dx.doi.org/10.1016/j.measurement.2014.07.007
http://dx.doi.org/10.1016/j.measurement.2014.07.007
http://dx.doi.org/10.1016/j.neucom.2015.10.029
http://dx.doi.org/10.1016/j.neucom.2015.10.029
http://dx.doi.org/10.1016/j.neucom.2015.10.029
http://dx.doi.org/10.1016/j.neucom.2015.10.029
http://dx.doi.org/10.1016/j.neucom.2015.10.029
http://dx.doi.org/10.1016/j.neucom.2015.10.029
http://dx.doi.org/10.1109/LSP.2016.2623520
http://dx.doi.org/10.1109/LSP.2016.2623520
http://dx.doi.org/10.1109/LSP.2016.2623520
http://dx.doi.org/10.1109/LSP.2016.2623520
http://dx.doi.org/10.1109/LSP.2016.2623520


demodulation in communications systems [1, 2, 3, 4, 5]. PLL consists of two main

components: a phase detector and a variable frequency oscillator [6]. The phase

detector compares the phase of the output signal with that of the input signal;

frequency synchronization is achieved by keeping the input and output phases

the same, which is performed by the variable frequency oscillator by adjusting the

output frequency.

A Kalman filter (KF) is used in the digital PLL (DPLL) for phase detection

[7, 8, 9]. The KF is a mathematical algorithm that estimates unknown parameters

from noisy measurements. DPLL based on the KF has shown superior performance

that conventional DPLL [7, 8, 9]. However, KF-based DPLL is vulnerable to

computational errors such as round-off error and quantization error, because KF has

an infinite impulse response (IIR) structure that uses all past measurements and

accumulates computational errors over time [10, 11]. Unbiased finite memory

DPLL (UFMDPLL) was proposed in [10] to overcome the drawbacks of KF-based

DPLL. UFMDPLL is based on the finite impulse response (FIR) filter [12, 13, 14,

15, 16, 17, 18, 19, 20, 21] using only recent finite measurements, and it showed

superior robustness against computational errors than KF-based DPLL.

The FIR filter has an important design parameter called the horizon size, which

is the number of measurements used for estimation. Because the horizon size,

usually denoted N, is a critical problem in FIR filtering [20, 22, 23]. Various

approaches to finding an optimal N (denoted Nopt) for general FIR filters has been

proposed based on the minimum mean square value [16], bank of FIR filters [20],

and Monte Carlo simulation [14, 15], but an analytic method to calculate Nopt has

not yet been found. A method to find Nopt for a moving average DPLL was

proposed in [24]. However, the method is only applicable to scalar DPLL systems

that consider a single unknown parameter, the timing offset. No method of finding

Nopt for a complete DPLL system has yet been proposed to the best of the authors

knowledge.

We propose a novel method to find Nopt for a complete DPLL system in this

letter in which two unknown parameters, the timing offset and the zero-crossing

point, are considered. First, we show that the FIR filter gain of the UFRDPLL can

be represented by a function of N. Then, we derive the estimation error variance

equation as a function of N. Lastly, we propose a method to find Nopt based on the

partial derivatives of the estimation error variance equation. Simulation results

demonstrate that the proposed method is effective and more efficient than conven-

tional Monte Carlo simulation.

2 Main results

Consider the following state-space models of the zero-crossing DPLL [7]:

xkþ1 ¼ Axk þ wk; ð1Þ
yk ¼ Cxk þ vk; ð2Þ

where

A ¼ 1 1

0 1

" #
; C ¼ 1 0

� �
:
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In (1) and (2), xk and yk are respectively the state and the measurement at discrete

time index k. The state vector xk is defined as xk ¼ ½�k �k�T , where �k ¼
t0 þ kðT1 � T0Þ is the zero crossing point, �k ¼ T1 � T0 is the timing offset, and

T0 and T1 are the respective sampling periods of the receiver and transmitter. wk

and vk are respectively the process and measurement noises; they are assume to be

zero-mean white Gaussian and their covariances are defined as

Q ≜ diag½q21; q22�; R ≜ r2; ð3Þ
where diagð�Þ indicates a diagonal matrix. The UFMDPLL [10] for estimating xk is

given as

x̂k ¼ HYk�1; ð4Þ
where H is the gain matrix and Yk�1 is the augmented measurement matrix defined

as

Yk�1 ≜ ½yTk�N yTk�Nþ1 � � � yTk�1�T ; ð5Þ
where N is the number of measurements on the time horizon ½k � N; k � 1� and is

called the horizon size. Yk�1 can be represented as a function of state vector xk as

follows:

Yk�1 ¼ �CNxk þ �GNWk�1 þ Vk�1; ð6Þ
where

�CN ≜

CA�N

CA1�N

CA2�N

..

.

CA�1

2
666666664

3
777777775
; ð7Þ

�GN ≜

CA�1 CA�2 � � � CA�N

0 CA�1 � � � CA1�N

..

. ..
. ..

. ..
.

0 0 � � � CA�1

2
666664

3
777775; ð8Þ

Wk�1 ≜ wT
k�N wT

k�Nþ1 � � � wT
k�1

� �T
; ð9Þ

Vk�1 ≜ vTk�N vTk�Nþ1 � � � vTk�1
� �T

: ð10Þ
By substituting (6) into (4), we obtain

x̂k ¼ Hð �CNxk þ �GNWk�1 þ Vk�1Þ
¼ H �CNxk þHð �GNWk�1 þ Vk�1Þ: ð11Þ

Thanks to the unbiasedness property, the UFMDPLL [10] satisfies H �CN ¼ I. Thus,

equation (11) can be written as

x̂k ¼ xk þHð �GNWk�1 þ Vk�1Þ: ð12Þ
We define the estimation error ek as ek ¼ x̂k � xk. Then, we obtain
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ek ¼ x̂k � xk

¼ Hð �GNWk�1 þ Vk�1Þ: ð13Þ
The optimal gain matrix Hopt is obtained by minimizing the variance of the

estimation error as

Hopt ¼ argmin
H

E½eTk ek�

¼ argmin
H

E½trðekeTk Þ�; ð14Þ

where trð�Þ indicates the trace of a matrix. Substituting (13) into (14), we obtain

Hopt ¼ argmin
H

tr½H �GNQN
�GT
NH

T þHRNH
T�; ð15Þ

where QN and RN are defined as

QN ≜ diag½Q; � � � ;Q�; RN ≜ diag½R; � � � ; R�: ð16Þ
Hopt is obtained by solving the trace optimization problem (15). In [10], H was

found that satisfies the unbiased condition, which is represented by a function of

the horizon size N as follows:

H ¼
a1 a2 � � � aN

b1 b2 � � � bN

" #
;

ai ¼ �2N � 4 þ 6i

ðN � 1ÞN ; bi ¼ �6N � 6 þ 12i

ðN � 1ÞNðN þ 1Þ ; ði ¼ 1; 2; � � � ; NÞ: ð17Þ

Using (17), the trace term in (15) can be represented by a function of N. Through

simple algebraic computation, we thus obtain

tr½H �GNQN
�GT
NH

T þHRNH
T � ¼ q21fq1 þ q22fq2 þ r2fr; ð18Þ

where q1, q2, and r are the components of the noise covariance matrices defined in

(3), and fq1 , fq2 , and fr are as follows:

fq1 ≜
2N4 þ 9N3 þ 32N2 þ 9N þ 20

15NðN2 � 1Þ ;

fq2 ≜
2N6 þ 11N5 þ 103N4 þ 242N3 þ 19N2 � 199N þ 38

210NðN2 � 1Þ ;

fr ≜
2ð2N2 þ 3N þ 7Þ

N3 � N
: ð19Þ

Hopt can be obtain by minimizing (18). We see that (18) is a function of N, q1,

q2, and r. Thus, (18) can be represented as

fðN; q1; q2; rÞ ¼ q21fq1 þ q22fq2 þ r2fr: ð20Þ
When given q1, q2, and r, (18) only depends on N. The gain matrix, H, depends on

the horizon size N, and the optimal horizon size, Nopt, is the horizon size that

corresponds to Hopt. Thus, Nopt can be found by minimizing (20).

Now, we show that fðN; q1; q2; rÞ is a convex function with respect to N and

Nopt is unique. The first order partial derivative of fðN; q1; q2; rÞ with respect to N

is obtained as follows:
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@fðN; q1; q2; rÞ
@N

¼ q21
@fq1

@N
þ q22

@fq2

@N
þ r2

@fr

@N
; ð21Þ

where

@fq1

@N
¼ 2ðN6 � 19N4 � 18N3 � 46N2 � 10Þ

15N2ðN2 � 1Þ2 ;

@fq2

@N
¼ 6N8 þ 22N7 þ 93N6 � 44N5 � 328N4 � 86N3 � 133N2 þ 38

210N2ðN2 � 1Þ2 ;

@fr

@N
¼ 2ð2N4 � 6N3 � 23N2 þ 7Þ

N2ðN2 � 1Þ2 :

The second order partial derivative of fðN; q1; q2; rÞ with respect to N is

@2fðN; q1; q2; rÞ
@N2

¼ q21
@2fq1

@N2
þ q22

@2fq2

@N2
þ r2

@2fr

@N2
; ð22Þ

where

@f2
q1

@N2
¼ 4

15N3ðN2 � 1Þ3 � ð17N6 þ 27N5 þ 111N4 þ 9N3 � 30N2 þ 10Þ;

@f2
q2

@N2
¼ 1

105N3ðN2 � 1Þ3 � ð6N10 þ 11N9 � 18N8 � 33N7 þ 142N6 ð23Þ

þ 195N5 þ 594N4 þ 43N3 � 114N2 þ 38Þ;
@f2

r

@N2
¼ 4

N3ðN2 � 1Þ3 � ð2N6 þ 9N5 þ 48N4 þ 3N3 � 21N2 þ 7Þ; ð24Þ

where
@f2

q1

@N2 ,
@f2

q2

@N2 , and
@f2

r

@N2 are all positive because of N � 2. The horizon size must be

equal to or greater than the dimension of the state vector, which is a basic condition

of FIR filtering. q1, q2, and r are all positive because they are standard deviations of

Gaussian noises. q1, q2, and r cannot be zeros in real systems. Consequently, we

obtain @2fðN;q1;q2;rÞ
@N2 > 0. Because the second-order partial derivative fðN; q1; q2; rÞ

with respect to N is positive, fðN; q1; q2; rÞ is a convex function with respect to N.

Therefore, there exists a unique Nopt, which is the global minimum.

Lastly, we derive the equation to obtain Nopt. Setting (21) to zero, we obtain

@fðN; q1; q2; rÞ
@N

¼ 1

210N2ðN2 � 1Þ2 � gðN; q1; q2; rÞ ¼ 0;

where

gðN; q1; q2; rÞ ¼ 6q22N
8 þ 22q22N

7 þ ð28q21 þ 93q22ÞN6 � 44N5q22

� ð532q21 þ 328q22 þ 840r2ÞN4 � ð504q21 þ 86q22 þ 2520r2ÞN3

� ð1288q21 þ 133q22 þ 9660r2ÞN2 þ 280q21 þ 38q22 þ 2940r2: ð25Þ
From (25), we can find Nopt by solving (25). However, (25) is a high-order equation

and is difficult to solve directly. Thus, the solution of (25) is obtained using a

numeric solver (e.g., MATLAB). Given q21, q
2
2, and r2, we can solve (25). Because

the horizon size must be a natural number in the discrete-time case, Nopt is the

natural number closest to the solution of (25) that satisfies the condition N � 2.
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3 Numerical example

The proposed method is an analytic approach to Nopt. Here, we demonstrate the

effectiveness and efficiency of the proposed method by comparing it with the

experimental approach, Monte Carlo (MC) simulation. We set the DPLL system

parameters as follows [7, 8, 9]. The process noise covariances were set as q21 ¼
q22 ¼ T2

0=12, where T0 ¼ 0:001. The measurement noise covariance, r2, varies

according to the signal-to-noise ratio (SNR) values. We consider nine cases of

SNR in the range 10–90 dB. The SNR is computed as 10log10ðT2
0=r

2Þ.
First, we find Nopt using the proposed method. Fig. 1 shows the absolute value

of @fðN;q1;q2;rÞ
@N for the horizon sizes in the interval 2 � N � 250, when the SNR is

10 dB. The horizon size producing @fðN;q1;q2;rÞ
@N closest to zero is the optimal horizon

size; thus, Nopt ¼ 212 in this case, as shown in Fig. 1. In this way, we can find Nopt

for the nine SNR values; the results are presented in Table I.

Next, we find Nopt using MC simulation. We conducted a 100 MC run for each

N in the interval 2 � N � 250 and computed the mean square error (MSE) values

for each case. Fig. 2 shows the MSE as a function of N in the case of 50 dB SNR.

MSEs for only 2 � N � 100 are shown in Fig. 2 to show the position of Nopt

clearly, since the horizon size producing the minimum MSE is Nopt ¼ 21 in this

case. Following the same way, we obtained Nopt for the nine cases, which are

presented in Table I.

In Table I, we see that Nopt values obtained by the proposed method are almost

the same as those obtained via MC simulation. Thus, the effectiveness of the

proposed method is verified experimentally. In the low SNR (i.e., high measure-

ment noise) cases such as 10- and 20-dB cases, Nopt values of the proposed method

slightly differ from those of the MC simulation. This is because running 100 MC is

insufficient for low SNR cases. High noise cases require more MC runs to obtain

reliable results compared to low noise cases.

Fig. 1. Absolute value of @fðN;q1;q2;rÞ
@N for different N in case of 10 dB

measurement noise
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Table II compares the times required for the proposed method and the MC

simulation. The simulations were carried out using MATLAB on a personal

computer with an Intel Core i5-6200U CPU at 2.3GHz. The time for the proposed

method was only 434ms, which is much smaller than the 2098 s required by the

MC simulation. Decreasing the number of the MC run to 10 allows the computation

time to be reduced to approximately 210 s, which is still notably larger than that of

the proposed method. However, 10 MC run is insufficient to obtain reliable MC

simulation results. The proposed method is very efficient compared to the conven-

tional MC simulation method.

Table I. Nopt obtained using proposed method and MC simulation

SNR (dB) proposed method MC simulation

10 212 208
20 119 122
30 67 67
40 37 37
50 21 21
60 12 12
70 7 7
80 4 4
90 3 3

Table II. Computation time of proposed method and MC simulation

Proposed method MC simulation

434ms 2098 s

Fig. 2. Mean squared errors for different N obtained via Monte Carlo
simulation in case of 50 dB measurement noise
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4 Conclusion

In this letter, we have proposed a novel method for finding Nopt for UFMDPLL.

The estimation error variance of the UFMDPLL was represented by a function of

N. We have proved that the function of N is convex and derived from the equation

for obtaining Nopt via the partial derivative with respect to N. In the numerical

example, the proposed method provided Nopt with a remarkably short computation

time compared to conventional MC simulation. Using the proposed method, the

Nopt of UFMDPLL can be obtained correctly and efficiently.
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