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Abstract: In this paper, a computational intelligence method to model

lossy substrate integrated waveguide (SIW) cavity resonators, the Neural

Network Residual Kriging (NNRK) approach, is presented. Numerical

results for the fundamental resonant frequency fr and related quality factor

Qr computed for the case of lossy hexagonal SIW resonators demonstrate

the NNRK superior estimation accuracy compared to that provided by the

conventional Artificial Neural Networks (ANNs) models for these devices.
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1 Introduction

Nowadays the substrate integrated waveguide (SIW) technology plays a funda-

mental role for building effective microwave devices operating at millimeter and

sub millimeter bands [1]. A lot of these devices are based on the working principles

of cavity resonators [1, 2]. Cavity SIW resonators are microstrip-like structures

having walls realized by cylindrical metallic vias [1]. In [3] an effective method to

handle cavity SIW with losses, based on the dyadic Green’s function of the lossy

parallel plate waveguide, has been presented. To reduce the computational burden

associated with the design and the optimization of these devices in [4, 5, 6] several

surrogate modelling technique able to estimate the fundamental resonant frequency

fr and the related quality factor Qr for these structures, have been exploited. In this

paper, an accurate methodology named Neural Network Residual Kriging (NNRK)

approach [7] is investigated, in order to develop more accurate surrogate models for

lossy SIW cavities. NNRK is a surrogate modelling procedure, intensively used

in Geostatistic, Aerospace engineering and Civil engineering [7], to which a little

attention has been paid, at the best of the authors knowledge, in the field of the

microwave and millimeter wave SIW engineering. It consists in a two step

algorithm that couples an Artificial Neural Network (ANN) with a Kriging

technique [8], obtaining in this manner a notable improvement of the ANN

estimation performances [7]. To demonstrate the NNRK modelling capability,

numerical results relevant full wave computations carried out for the case of

hexagonal lossy SIW resonators, NNRK and conventional ANNs estimations, are

presented and discussed.

2 Computation of resonances and quality factors for a lossy SIW

resonator

In this section we concisely recall the main notions concerning the computation of

the resonances fr and the related quality factors Qr for lossy cavity SIW resonators.

As stated in [3], the electromagnetic field inside a lossy SIW cavity can be

evaluated by using the dyadic Green’s function of the lossy parallel plate wave-

guide (PPW), and considering the scattering phenomenon due by the metallic via

holes realizing the walls of the resonator. The scattered field can be represented by

means of suitable cylindrical vector wave eigenfunctions Mn, Nn [3] having

unknown coefficients ATE
m;n;l (A

TE
m;n;l) (the apex TM and TE indicate the TM and
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the TE scattered field inside the PPW, respectively). The expansion coefficients

ATM
m;n;l (A

TE
m;n;l) are determined through the solution of the following matrix linear

system [3]

LFdAFd ¼ �Fd Fd 2 fTE;TMg ð1Þ
which arises by imposing the impedance boundary condition on the surfaces of

each via hole realizing the cavity walls [3]. Cavity resonances fr are the real part

of the complex frequencies �fr for which (1) admits a non-trivial solution when the

second member is equal to zero [9]. Once that a �fr has been located, the related

quality factor Qr can be easily computed as [3]

Qr ¼ Reð �frÞ
2 Imð �frÞ

ð2Þ

3 Regression kriging and neural network residual kriging approach

In the framework of the regression Kriging, the relationship between the input

vectors fxðiÞgNi¼1 2 R
n and the observed responses fyðxðiÞÞgNi¼1 2 R is assumed of

the form [8]

yðxðiÞÞ ¼ fðxðiÞÞ þ �ðxðiÞÞ ð3Þ
where fð�Þ is a suitable noise free function which models the global input-output

behavior, and �ð�Þ is a stochastic process which models the deviation from yð�Þ of
fð�Þ. The process �ð�Þ is characterized by a mean � ¼ 0, a variance �2 and by

covariance matrix C ¼ �2�, where � is the correlation matrix [8]. Several func-

tional forms for the � elements are possible, but in what follows we consider a

Gaussian correlation functional form [8], i.e.

�ij ¼ exp �
XN
l¼1

�ljxðiÞl � xðjÞl j2
 !

ð4Þ

In (4) the term xðiÞl (xðjÞl ) stands for the l-th, component of the i-th (j-th) input vector

xðiÞ (xðjÞ), whereas the terms �l; l 2 f1; . . . ; Ng are N unknown parameters, which

describe the degree of correlation existing among the components of the input

vectors xðiÞ and xðjÞ. Once that the optimum coefficients �̂l have been evaluated

solving a suitable maximization problem defined on the input-output data [8], the

observed response yðxðNþ1ÞÞ at a new input point xðNþ1Þ can be obtained as [8]

yðxðNþ1ÞÞ ¼ �̂ þ rt��1ðy � 1�̂Þ ð5Þ
In (5) �̂ is the mean value evaluated using the prior values of the coefficients �̂l, y is

the vector of the N observed responses, rt is the transpose vector containing the

correlation between the new input vector xðNþ1Þ and the preceding fxðiÞgNi¼1 input

vectors, and finally 1 indicates the vector having all components equal to 1. The

Kriging model defined by (5) can be coupled with an ANN, so as to enhance the

accuracy of the output response of this latter without compromising the overall

computational cost, thus by realizing the so-called Neural Network Residual

Kriging (NNRK) approach (see [7] and references within). NNRK is basically a

two step algorithm. Let be TS ¼ fxðiÞ; yigNi¼1 a training set built with the aim to

develop a surrogate model for a device by an ANN. The first step of the NNRK

© IEICE 2017
DOI: 10.1587/elex.14.20170073
Received January 23, 2017
Accepted February 15, 2017
Publicized March 3, 2017
Copyedited March 25, 2017

3

IEICE Electronics Express, Vol.14, No.6, 1–6



procedure simply consists to train the ANN by using TS. Let be POV ¼ f �yigNi¼1 the
set of the ANN estimated outputs related to the input training points fxðiÞgNi¼1.
Using POV, the set of residuals SR ¼ f�i ¼ �yi � yigNi¼1 is formed. The second step

of the NNRK procedure simply consists to assemble the new set NTS ¼
fxðiÞ; �igNi¼1, and by using it to build the Kriging model (5). After completing this

last step, the NNRK output response in correspondence of a new input point xðNþ1Þ

is simply obtained by adding to the ANN response �yNþ1 the residual �Nþ1 given by

(5) evaluated at xðNþ1Þ [7].

4 Numerical results

To demonstrate the modelling capability of the NNRK approach, lossy SIW

resonators having hexagonal geometry have been considered (see Fig. 1). As

specified by the first step of the NNRK procedure, several feed forward multilayer

perceptron neural networks configurations have been developed exploiting MATLAB

and validated using as performance index the mean square relative error (MSRE)

[4, 5]. The following backpropagation rules have been employed: i) Polak-Ribiere

Conjugate Gradient (PRCG), ii) Resilient Backpropagation (RB), iii) Gradient

Descent (GD), iv) Scaled Conjugate Gradient (SCG) [5]. The via hole radius a0,

the pitch p, the substrate thickness h, the dielectric constant �r, the dielectric loss

tangent tanð�Þ, the metal conductivity �m and side L have been the selected input

parameters for the neural architectures, while the fundamental resonant frequency

fr and the related quality factor Qr have been the outputs.

For these inputs, a range of values of practical engineering interest have been

considered. These ranges are reported in Table I. Three set of data, one of training

and the others of validation and testing, having 1280, 128, and 128 tuples,

respectively, have been created by means of a full wave code based on the theory

presented in [3]. The time required to generate these data was about 8 hours on an

Intel Xeon DP E5405 Quad Core 2.0GHz based workstation, with 20GB of main

memory. In term of MSRE (this parameter has been computed with reference to the

validation set) the best result has been obtained by a neural architecture having

three hidden layers with eight, six and three neurons, respectively, trained by using

the RB method (MSRE � 1:42 � 10�1). Accordingly, as specified by the second

step of the NNRK procedure, for this neural architecture we have computed (by

using the validation set) the set of residuals SR, which has been exploited to build

Fig. 1. A hexagonal SIW resonator.
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the Kriging model. To this end, the DACE Kriging toolbox has been used [10]. In

Table II the MSRE computed on the test set for the NNRK and for the ANN acting

alone, is reported. Fig. 2 shows the scatter plots obtained comparing the values of

fr and Qr belonging to the test set against those estimated by i) the NNRK

approach, and ii) by the ANN acting alone, respectively. From these results it can

be clearly noticed as the NNRK approach gives far better results than compared

with those gives by the ANN acting alone (being the MSRE for the NNRK case

lower than for the ANN case, we have that the NNRK estimates are less scattered

than the ANN estimates, and then more accurate). As a further result, a comparison

between the values of the fundamental resonant frequency fr and the related

quality factor Qr for the hexagonal SIW resonator presented in [3] and those

Table I. Range of values for the inputs (all dimensions are in
millimeters, �m is in Siemens/meter).

a0 0:05 � 0:8

p 0:1 � 2:5

h 0:45 � 0:85

L 3 � 10

�r 2 � 8

tanð�Þ 0:015 � 0:045

�m 4:8 � 107 � 5:8 � 107

Table II. MSRE computed on the test set.

Method MSRE

NNRK 1:24 � 10�2
ANN 3:87 � 10�1

Fig. 2. Scatterer plots. On the right: ANN estimations vs full wave
computations (top: fr scatter plot, bottom: Qr scatter plot).
On the left: NNRK estimations vs full wave computations
(top: fr scatter plot, bottom: Qr scatter plot).
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estimated by NNRK and by ANN, is reported in Table III. The far lower percentage

errors �fr
and �Qr

provided by NNRK confirms the better accuracy of this approach.

5 Conclusions

In this paper, an accurate procedure to build surrogate models of lossy SIW cavities

which combines ANNs with Kriging, the NNRK approach has been presented. To

validate its performances NNRK has been applied to estimate the fundamental

resonant frequency fr and the related quality factor Qr in the case of lossy

hexagonal cavity SIW structures. Numerical results demonstrate the potentiality

of the NNRK approach for the development of accurate CAD surrogate models to

employ to optimize in a fast way microwave and millimeter wave SIW devices.

Table III. Fundamental resonant frequency fr and quality factor Qr

for the lossy hexagonal SIW resonator presented in [3],
values estimated by the developed NNRK and by the ANN
acting alone, and related percentage errors �fr

, �Qr
.

fr Qr �fr
�Qr

from paper [3] 10.13GHz 255.4 - -

NNRK 10.12GHz 255.1 0.19% 0.12%

ANN 9.98GHz 251.4 1.48% 1.56%
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