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Abstract: This paper proposes a novel coarse-grained reconfigurable array

(CGRA) with hierarchical context cache structure and efficient cache man-

agement approaches, including time-frequency weighted (TFW) context

cache replacement strategy and context multi-casting (CMC) mechanism.

By fully exploiting inherent configuration features, the configuration per-

formance is improved by 18.2% with half context memory cost. Our CGRA

was implemented under the process of TSMC 65 nm, which can work at the

frequency of 200MHz with the area of 23.2mm2. Compared to the previous

CGRAs, our work has the advantage of 3.8∼12× performance improvement

and 2.3∼15.7× energy efficiency increase.
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1 Introduction

Coarse-grained reconfigurable architecture (CGRA) has been proven to be a

promising solution for computing intensive applications between the extremes of

general purpose processor (GPP) and application specific integrated circuit (ASIC),

which has higher performance level than GPP and wider applicability than ASIC

[1]. CGRA supports dynamic reconfiguration at runtime [2], which not only boosts

the performance but also can be reconfigured to adapt different characteristics of

applications. However, due to this feature, the performance of CGRA is heavily

affected by the efficiency of configuration process. As the scale of reconfigurable

array increases, configuration management becomes more critical because more

reconfigurable resources are required to be fed with configuration contexts.

To solve this problem, context cache, also called context memory, is usually

implemented with the reconfigurable array to provide local storage for recently

used configuration contexts, which plays an important role for configuration

performance with memory and power overhead. Many kinds of CGRAs have been

proposed in recent years by employing context cache, whose structures can be

classified into three categories including the centralized, the distributed and the

hierarchical. In MorphoSys [3] and ADRES [4, 5], a centralized context cache is

shared by all reconfigurable resources. In sprit of the advantage of low hardware

complexity for supervision, the configuration performance degrades heavily due to

access conflict in the configuration cache. For the distributed context cache as in

DRP-1 [6], each PE array access is coupled with an individual cache. Though all

PE arrays can access contexts in parallel with high throughput, context redundancy
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is unavoidable among these context caches, leading to unnecessary hardware

overhead in context caches. The hierarchical context cache combines the merits

of the centralized and distributed in terms of satisfying configuration performance

and low hardware overhead. In CGRAs as XPP [7, 8] and MORPHEUS [9],

multiple context caches are implemented in different level of PE arrays, where the

main design concern focuses on the sizes and numbers of caches as well as the

cache supervision scheme.

In this paper, we propose a novel multi-array CGRA with hierarchical context

cache structure for high performance and efficiency. The context cache is structured

hierarchically with different bandwidths and sizes in each level to increase the

throughput while restrict the hardware cost. Two context management approaches,

namely time-frequency weighted (TFW) context cache replacement and context

multi-casting (CMC), are employed to improve the cache performance by adapting

the features of configuration context.

The rest of this paper is organized as follows. The architecture of the proposed

CGRA is described in Section 2 with the hierarchical context cache and its

configuration process. The context cache management solutions are presented in

Section 3 for the hierarchical context cache by analyzing the features of config-

uration context. Section 4 demonstrates the improvement of the proposed context

cache design compared with the prior work. Finally the conclusion is made in

Section 5.

2 Multi-array CGRA with hierarchical context cache structure

In this section, we present a multi-array CGRA with hierarchical context cache

structure, whose dynamic configuration process is described as well.

2.1 Multi-array CGRA structure

Similar as the CGRAs of Morphosys [3] and DRP-1 [6], the proposed CGRA is

designed hierarchically with multiple reconfigurable arrays to increase the scale of

CGRA for higher parallelism. Due to the style of multiple arrays, the CGRA has the

advantage of less configuration efficiency degradation when the scale of reconfig-

urable resources expands.

The block diagram of the CGRA is shown in Fig. 1, which consists of a RISC

processor, an external memory interface (EMI) and two homogeneous reconfig-

urable processing units (RPU). The RISC processor executes control intensive tasks

and hosts the whole CGRA whereas the RPUs execute data intensive kernels. The

EMI is responsible of the data and configuration contexts transmission from and to

the external memory. The RPU incorporates four reconfigurable arrays (RCA).

Each RCA contains an 8 � 8 array of processing elements (PE) with 16-bit data

width for arithmetic and logical operations.

2.2 Hierarchical context cache structure

Besides the hardware structure of CGRA, the configuration process plays an

increasingly important role in terms of improving performance and reducing power

consumption [10, 11, 12]. The proposed CGRA features dynamic configuration,
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where no more configuration contexts are updated during its computation. How-

ever, the configuration procedure of the following task can be performed in advance

along with the computation of the current one in pipeline so as to improve the

performance of the whole CGRA.

The configuration contexts are classified into the context group (CG) and the

core context (CC). The CC represents the configuration of a iteration mapped to

RCA, which occupies 512 bytes for the 8 � 8 PE array. The CG describes which

RCA is mapped to and consists of a sequence of the CC indexes, which is

responsible for the configuration of a kernel task. The size of CG varies according

to the number of CCs in the sequence, which is 256 bytes at most.

Both configuration contexts are stored in the context cache structure hierarchi-

cally as shown in Fig. 1. The cache for CG is composed of L2CGC (level 2 CG

cache) and L3CGC (level 3 CG cache), whereas that for CC consists of L1CCC

(level 1 CC cache), L2CCC (level 2 CC cache) and L3CCC (level 3 CC cache). As

the lowest level of context cache, the L1 context cache (L1CCC) is implemented

within RCA and used as a temporal repository of the CCs used recently. The L2

context caches (L2CGC and L2CCC) are attached to RPU and shared by the RCAs

inside the RPU. The L3 context caches (L3CGC and L3CCC) are shared by the

RPUs.

The configuration procedure is processed in two stages. Firstly, the CG is

loaded from the CGC hierarchy and parsed by the RPU context parser to determine

the mapped RCA and the required CCs for it. When the required CG misses in the

lower level of CGC, the RPU context parser checks it from the higher level

progressively until the external memory and updates the contexts in the CGC

accordingly. After that, the RCA context parser fetches the CCs in sequence by

Fig. 1. Diagram of CGRA with hierarchical context cache structure
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their indexes to configure the PE operations and interconnections in RCA. The

hierarchical CCC is accessed level by level similarly as the CGC.

In order to increase the hardware efficiency of the hierarchical context cache

structure, the lower level of cache is designed with higher access bandwidth and

smaller cache size. Considering the scale of RCA and the bandwidth of the external

memory interface, the bandwidths and sizes of each level are listed in Table I in

detail. It can be seen that when the context cache of the lowest level (L2CGC/

L1CCC) hits, the CG and CC can be loaded with high throughput in eight and four

clock cycles respectively. The total storage capacity of the context cache hierarchy

amounts to 144K byte for the whole CGRA, including 64 CGs and 256 CCs, which

has the advantage of low hardware cost as compared in Table II. For each RCA, the

number of contexts in cache is roughly 1/8 of that of ADRES. Moreover, the the

storage capacity for each PE is 288 bytes in average, which is only 16.7% of

ADRES.

3 Context cache management approaches based on configuration

context feature

In this section, two novel management approaches for the hierarchical context

cache structure are proposed based on the analysis of the configuration context

features.

3.1 Time-frequency weighted (TFW) cache replacement strategy

The cache replacement strategy plays an important role in cache performance

improvement. For GPP, various cache replacement algorithms have been proposed

such as round-robin, least recently used (LRU) [13], least frequently used (LFU)

[14] and so on. However, since the size of configuration context is much larger than

that of instruction in GPP, traditional approaches would suffer serious reconfigura-

tion performance degradation when cache misses.

Table I. Bandwidths and sizes of context cache hierarchy

Context Group Cache Core Context Cache External

L2CGC L3CGC L1CCC L2CCC L3CCC Memory

Bandwidth
256 128 1024 512 256 64

(bits/cycle)

# of contexts 16 32 16 32 64 -
Size (KB) 4 8 8 16 32 -

# of total contexts 64 256 -
Total Size (KB) 16 128 -

Table II. Context cache overhead comparison

#/Array Size/PE

ADRES [5] 256 1728 Bytes

Ours
8 CGs/RCA

288 Bytes
32 CCs/RCA
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The configuration context features the temporal locality and nonuniform access

frequency for both CG and CC. The temporal locality shows the objective

regularity of configurations when they are performed frequently during their life-

time, which can be demonstrated from the fact the same CG and CC can be invoked

frequently in a short time. However, from the global perspective, the access

frequencies of configuration contexts vary not only for different tasks but also

for different periods. Therefore, the cache performance would deteriorate if keeping

the frequency as a constant for a certain context regardless of task switch.

Algorithm 1 TFW cache replacement algorithm

Require: cache holds m valid elements currently

1: if cache hits ctx at position i then

2: ele½i�:cnt ( ele½i�: frq � tfwf

3: for all j ≠ i and j � m do

4: ele½j�:cnt ( ele½j�:cnt þ 1

5: end for

6: else fcache missesg
7: if cache is not full then

8: ele½m þ 1�:ctx ( ctx:dat fcache the context at position m þ 1g
9: ele½m þ 1�:addr ( ctx:addr

10: ele½m þ 1�: frq ( ctx: frq

11: ele½m þ 1�:cnt ( ctx: frq � tfwf

12: for all j � m do

13: ele½j�:cnt ( ele½j�:cnt þ 1

14: end for

15: else fcache fullg
16: find x with the maximum of ele½x�:cnt fselected as the victimg
17: ele½x�:ctx ( ctx:dat fcache the context at position xg
18: ele½x�:addr ( ctx:addr

19: ele½x�: frq ( ctx: frq

20: ele½x�:cnt ( ctx: frq � tfwf

21: for all j ≠ i do

22: ele½j�:cnt ( ele½j�:cnt þ 1

23: end for

24: end if

25: end if

To adapt with the above configuration context features, a time-frequency

weighted (TFW) context cache replacement algorithm is proposed for the hier-

archical context cache structure, which combines the merits of LRU and LFU

algorithms. Besides the content data of the contexts (dat), each element of

cache consists of the address (addr), the frequency flag ( frq) and the counter for

the context (cnt). A time-frequency weighted factor, denoted as tfwf, is suggested

to trade off between the features of temporal locality and nonuniform access

frequency.
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The pseudo code of the TFW algorithm is shown in Alg. 1, where the currently

needed context is noted as ctx and the updated element of cache is ele. The

initialization value of cnt is defined as the product of frq and tfwf instead of zero as

in the traditional LRU algorithm, which is to take the average access frequency into

account adjusted by tfwf.

The presented TFW algorithm was implemented and integrated in the RCA/

RPU context parsers as illustrated in Fig. 2, which fetches the required context

from the lower level of context cache, Cachen, and updates the stored context with

the higher level of context cache, Cachenþ1, when cache misses. The structure of

the TFW replacement controller is composed of three parts. HitChecker is respon-

sible for checking if the required context hits in Cachen by comparing the context

address with those stored in Cachen. VicPosFinder calculates the position of the

victim when cache misses. CacheUpdater is used to update the cache element for

the missed context by reading it from Cachenþ1 and increase the counters of all

other elements.

3.2 Context multi-casting (CMC) mechanism

For the tasks with larger computation complexity than the scale of RCA, they can

be divided into multiple sub-tasks and mapped to multiple RCAs in parallel to

break though the resource limitation of RCA. In this case, the configurations are

same among different RCAs, which is called the feature of context sharing.

Therefore, in order to reduce the configuration overhead, a context multi-

casting (CMC) mechanism is employed during context access. Before the loading

of CG, the RPU context parser parses the index of CG and the mapped RCA in

advance. If the successive CGs are checked to be the same but mapped to different

RCAs, they can be loaded only once, which reduces the transmission time of CG

and starts the loading of CCs ahead of time.

The configuration processes with and without CMC mechanism are illustrated

and compared in Fig. 3. As an example, the same CG of four sub-tasks is shared by

Fig. 2. Hardware structure of TWF replacement controller
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and configured to four RCAs. As shown in Fig. 3(a), without regard to the feature

of context sharing, the CGs are loaded by the RPU context parser in sequence.

Hence, multiple CG loading processes are performed by each RCA. The loading of

CC is accordingly suspended waiting for the completion of CG transmission. By

adopting the CMC mechanism, the CGs are checked by the RPU context parser

before loading. If the successive CGs are with identical content for different RCAs,

these CGs are fetched from the CGC by only once and multi-casted to four RCAs

simultaneously, as shown in Fig. 3(b). The same CCs in the four RCAs can also be

loaded earlier in parallel. Owing to the CMC mechanism, the configuration over-

head composed of TCG and TCC is decreased significantly by reducing the overhead

of CG loading to 1/4. Though the start time of the first CG loading is delayed, the

task divided into four RCAs complete executing in advance along with the

configuration process.

4 Experimental results and comparison

The proposed CGRAwith hierarchical context cache structure and context manage-

ment mechanism were described with VerilogHDL language and synthesized under

the process of TSMC 65nm. The timing and area results were reported by

Synopsys Design Compiler (DC) using the typical case, which showed that this

CGRA can work at the frequency of 200MHz with the area of 23.2mm2. The

context caches were implemented by SRAM Macro Cell library with the area size

of 2.82mm2, which occupied 12.2% of the total area. The RCA/RPU context

parsers, which are in charge of the context cache management including TWF and

CMC, are area efficient with less than 2% hardware resource overhead.

The configuration overhead with the optimization approaches is compared with

[15] in Table III by taking H.264 high-profile decoding as an example. The

architecture of the proposed CGRA is similar with that in [15], where two RPUs

were implemented and composed of four 8 � 8 RCAs. However, the configuration

(a)

(b)

Fig. 3. Process of configuration and execution.
(a) Without CMC mechanism;
(b) With CMC mechanism
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context in [15] was stored in a centralized style with the total size of 288KB.

Compared with that design, the size of the hierarchical context cache structure is

reduced by half. With the TFW context cache replacement strategy, the clock cycles

for the configuration of each macro block is reduced by 12.3% in average. By

further adopting the CMC mechanism, more 5.9% clock cycles can be saved due to

the context sharing among RCAs.

The proposed CGRA is compared with two related design targeting at multi-

media applications in terms of performance, area and power consumption, as

shown in Table IV. Owing to the remarkable configuration performance improve-

ment, our CGRA can realize real-time H.264 high-profile decoding at the speed of

1080p@40 fps with the power consumption of 364mW. ADRES [5] was designed

to perform real-time (30 fps) H.264 baseline profile D1 decoding, which used a

centralized context cache called configuration RAM to hold the current active

configuration context for certain tasks. The architecture of XPP [7] was based on a

scalable array attached with the configuration managers (CM), which was com-

posed of hierarchical context caches including supervising CM and distributed

CMs. It can decode H.264 main profile HD stream at the frame rate of 24 fps. It can

be seen in Table IV that our CGRA has the advantage of 12� and 3:8� normalized

performance compared with ADRES and XPP-III due to the increase of config-

Table IV. Comparison with other CGRAs

ADRES [5] XPP-III [7] Proposed

Context Cache Structure Centralized Hierarchical Hierarchical
Process (nm) 90 90 65
Area (mm2) 64 75 23.2
Frequency (MHz) 300 450 200
Stream Profile Baseline Profile Main Profile High Profile
Performance 720 � 480@30 fps 1920 � 1080@24 fps 1920 � 1080@40 fps
Normalized Performance
(MBs/s/MHz)

135 432 1620

Normalized Performance
Comparison

1

12
� 1

3:8
� 1�

Power (mW) 105.5 3420 364
Energy Efficiency
(MBs/s/mW)

393.9 56.8 890.1

Normalized Energy
Efficiency Comparison

1

2:3
� 1

15:7
� 1�

Table III. Configuration overhead comparison (clock cycles/macro
block)

forman mobile bluesky Average Reduction

Centralized structure [15] 701 672 689 687 -
Hierarchical structure
with TFWA

636 573 601 603 12.3%

Hierarchical structure
with TFWA and CMC

606 534 548 562 18.2%
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uration efficiency. Moreover, the proposed CGRA offers 2:3� and 15:7� energy

efficiency enhancement with pipelined reconfiguration scheme.

5 Conclusion

This paper presents a multi-array CGRAwith hierarchical context cache structure to

increase configuration throughput and reduce context cache overhead. Two context

cache management mechanisms are further implemented to improve the config-

uration performance. The proposed CGRAwere implemented under the process of

TSMC 65 nm and can support real-time H.264 decoding application at the speed of

1080p@40 fps. Experimental results show that the proposed context cache manage-

ment improves the configuration performance by 18.2% with half context cache

size. Compared with related works, our CGRA has the advantage of 3:8�12�
performance increase and 2:3�15:7� energy efficiency improvement.
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