
Efficient unified semi-systolic
arrays for multiplication and
squaring over GF(2m)

Kee-Won Kim1 and Jae-Dong Lee2a)
1 Department of Applied Computer Engineering, Dankook University, Yongin, Korea
2 Department of Software Science, Dankook University, Yongin, Korea

a) letsdoit@dankook.ac.kr, Corresponding Author

Abstract: In this paper, we propose a unified algorithm to concurrently

perform multiplication and squaring over GF(2m) using the bipartite modular

multiplication method and deriving common operations. Also we design

efficient unified semi-systolic arrays from our proposed algorithm for fast

exponentiation. The proposed arrays can be used as a core circuit for various

applications. Also our architectures are well suited to VLSI implementation

as well.

Keywords: finite field, Montgomery multiplication, squaring, systolic

array, cryptography

Classification: Integrated circuits

References

[1] R. E. Blahut: Theory and Practice of Error Control Codes (Addison-Wesley,
Reading, MA, 1983).

[2] A. J. Menezes, et al.: Handbook of Applied Cryptography (CRC Press, Boca
Raton, FL, 1996).

[3] C. W. Chiou, et al.: “Concurrent error detection in Montgomery multiplication
over GF(2m),” IEICE Trans. Fundamentals E89-A (2006) 566 (DOI: 10.1093/
ietfec/e89-a.2.566).

[4] W. T. Huang, et al.: “Concurrent error detection and correction in a polynomial
basis multiplier over GF(2m),” IET Inf. Secur. 4 (2010) 111 (DOI: 10.1049/
iet-ifs.2009.0160).

[5] K. W. Kim and J. C. Jeon: “Polynomial basis multiplier using cellular systolic
architecture,” J. Inst. Electron. Telecommun. Eng. 60 (2014) 194 (DOI: 10.
1080/03772063.2014.914699).

[6] S. H. Choi and K. J. Lee: “Efficient systolic modular multiplier/squarer for fast
exponentiation over GF(2m),” IEICE Electron. Express 12 (2015) 20150222
(DOI: 10.1587/elex.12.20150222).

[7] K. W. Kim and J. C. Jeon: “A semi-systolic Montgomery multiplier over
GF(2m),” IEICE Electron. Express 12 (2015) 20150769 (DOI: 10.1587/elex.12.
20150769).

[8] P. Montgomery: “Modular multiplication without trial division,” Math.
Comput. 44 (1985) 519 (DOI: 10.1090/S0025-5718-1985-0777282-X).

[9] C. Koc and T. Acar: “Montgomery multiplication in GF(2k),” Des. Codes
Cryptogr. 14 (1998) 57 (DOI: 10.1023/A:1008208521515).

[10] M. E. Kaihara and N. Takagi: “Bipartite modular multiplication,” CHES 3659
(2005) 201 (DOI: 10.1007/11545262_15).

© IEICE 2017
DOI: 10.1587/elex.14.20170458
Received May 1, 2017
Accepted May 16, 2017
Publicized June 1, 2017
Copyedited June 25, 2017

1

LETTER IEICE Electronics Express, Vol.14, No.12, 1–10

http://dx.doi.org/10.1093/ietfec/e89-a.2.566
http://dx.doi.org/10.1093/ietfec/e89-a.2.566
http://dx.doi.org/10.1093/ietfec/e89-a.2.566
http://dx.doi.org/10.1093/ietfec/e89-a.2.566
http://dx.doi.org/10.1093/ietfec/e89-a.2.566
http://dx.doi.org/10.1049/iet-ifs.2009.0160
http://dx.doi.org/10.1049/iet-ifs.2009.0160
http://dx.doi.org/10.1049/iet-ifs.2009.0160
http://dx.doi.org/10.1049/iet-ifs.2009.0160
http://dx.doi.org/10.1049/iet-ifs.2009.0160
http://dx.doi.org/10.1080/03772063.2014.914699
http://dx.doi.org/10.1080/03772063.2014.914699
http://dx.doi.org/10.1080/03772063.2014.914699
http://dx.doi.org/10.1080/03772063.2014.914699
http://dx.doi.org/10.1587/elex.12.20150222
http://dx.doi.org/10.1587/elex.12.20150222
http://dx.doi.org/10.1587/elex.12.20150222
http://dx.doi.org/10.1587/elex.12.20150222
http://dx.doi.org/10.1587/elex.12.20150769
http://dx.doi.org/10.1587/elex.12.20150769
http://dx.doi.org/10.1587/elex.12.20150769
http://dx.doi.org/10.1587/elex.12.20150769
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1023/A:1008208521515
http://dx.doi.org/10.1023/A:1008208521515
http://dx.doi.org/10.1007/11545262_15
http://dx.doi.org/10.1007/11545262_15
http://dx.doi.org/10.1007/11545262_15


[11] M. E. Kaihara and N. Takagi: “Bipartite modular multiplication method,” IEEE
Trans. Comput. 57 (2008) 157 (DOI: 10.1109/TC.2007.70793).

[12] P. A. Scott, et al.: “Architectures for exponentiation in GF(2m),” IEEE J. Sel.
Areas Commun. 6 (1988) 578 (DOI: 10.1109/49.1927).

[13] K. J. Lee and K. Y. Yoo: “Linear systolic multiplier/squarer for fast
exponentiation,” Inf. Process. Lett. 76 (2000) 105 (DOI: 10.1016/S0020-
0190(00)00131-9).

[14] J. C. Ha and S. J. Moon: “A common-multiplicand method to the Montgomery
algorithm for speeding up exponentiation,” Inf. Process. Lett. 66 (1998) 105
(DOI: 10.1016/S0020-0190(98)00031-3).

[15] D. E. Knuth: The Art of Computer Programming, Seminumerical Algorithms,
vol. II (Addison-Wesley, MA, 1997).

1 Introduction

The arithmetic operations over finite field GFð2mÞ are very important for many

practical applications in error-correcting codes and cryptography [1, 2]. The

multiplication is one of the basic arithmetic operations over finite fields. Modular

exponentiation and inversion can be performed using a sequence of multiplications.

Although many multiplier over GFð2mÞ have been proposed [3, 4, 5, 6, 7], their

high space and time complexities are major limitations in various applications.

The Montgomery multiplication algorithm has been proposed for fast modular

integer multiplication [8]. The Montgomery multiplication was successfully

adapted to GFð2mÞ in [9]. An approach based on Montgomery multiplication

which allows one to split the operand into two parts, which can be processed in

parallel, is called a bipartite modular multiplication and is introduced in [10, 11].

They focused on application in the integer and mentioned the usability of their

method in the finite field. Thereafter, Kim and Jeon adapted their bipartite

technique to the modular multiplication in the finite fields for reducing the latency

and proposed multipliers over GFð2mÞ [5, 7].
The modular exponentiation is an essential part of cryptographic algorithms. It

is typically performed using a series of modular squaring and multiplication based

on the binary method. There are two modular exponentiation schemes: LSB (least

significant bit)-first and MSB (most significant bit)-first modular exponentiation,

where LSB and MSB refer to the LSB and MSB of the exponent. For fast LSB-first

modular exponentiation, modular squaring and multiplication can be performed

simultaneously [12, 13, 14]. Using the common operations from multiplication and

squaring, Choi and Lee [6] proposed the combined systolic multiplier/squarer that

computes modular squaring and multiplication concurrently instead of computing

them separately for the LSB-first exponentiation.

In this paper, we propose a unified algorithm to concurrently perform multi-

plication and squaring over GFð2mÞ using the bipartite modular multiplication

method and deriving common operations. Then we design efficient unified semi-

systolic arrays to concurrently compute multiplication and squaring over GFð2mÞ
from our proposed algorithm for fast exponentiation.

© IEICE 2017
DOI: 10.1587/elex.14.20170458
Received May 1, 2017
Accepted May 16, 2017
Publicized June 1, 2017
Copyedited June 25, 2017

2

IEICE Electronics Express, Vol.14, No.12, 1–10

http://dx.doi.org/10.1109/TC.2007.70793
http://dx.doi.org/10.1109/TC.2007.70793
http://dx.doi.org/10.1109/TC.2007.70793
http://dx.doi.org/10.1109/TC.2007.70793
http://dx.doi.org/10.1109/49.1927
http://dx.doi.org/10.1109/49.1927
http://dx.doi.org/10.1109/49.1927
http://dx.doi.org/10.1016/S0020-0190(00)00131-9
http://dx.doi.org/10.1016/S0020-0190(00)00131-9
http://dx.doi.org/10.1016/S0020-0190(00)00131-9
http://dx.doi.org/10.1016/S0020-0190(98)00031-3
http://dx.doi.org/10.1016/S0020-0190(98)00031-3


2 Preliminaries

2.1 Montgomery multiplication

GFð2mÞ is a kind of finite field that contains 2m different elements. This finite field

is an extension of GFð2Þ and any element over GFð2mÞ can be represented as a

polynomial of degree m � 1 over GFð2Þ. Let x be a root of the polynomial, then the

irreducible polynomial G is represented as G ¼ Pm
j¼0 gjx

j, where gj 2 GFð2Þ.
Let ¡ and ¢ be two elements of GFð2mÞ, then we define � ¼ � � �modG.

Also, let A and B be two Montgomery residues, then they are defined as A ¼
� � FmodG ¼ Pm�1

j¼0 ajx
j and B ¼ � � FmodG ¼ Pm�1

j¼0 bjx
j, where a Mont-

gomery factor, F and an irreducible polynomial, G are relatively prime, and

gcdðF;GÞ ¼ 1. Then, the Montgomery multiplication algorithm over GFð2mÞ can
be formulated as P ¼ A � B � F�1modG, where F�1 is the inverse of F modulo G.

Then, P can be expressed as P ¼ ð� � FÞ � ð� � FÞ � F�1 modG ¼ � � � � FmodG.

2.2 Bipartite modular multiplication

Kaihara and Takagi first have proposed a bipartite modular multiplication using

Montgomery algorithm and then they have extended their method [10, 11]. It splits

the operand multiplier into two parts that can be processed simultaneously to

increasing the calculation speed. We briefly review the main idea of their method.

Let the modulus M be an n-digit integer, where the radix of each digit is r ¼ 2t

and let a Montgomery radix F ¼ rk where 0 � k � n. Consider the multiplier Y to

be split into two parts YH and YL so that Y ¼ YHR þ YL. Then, the Montgomery

multiplication modulo M of the integers X and Y can be computed as follows:

X � Y ¼ XYF�1 modM

¼ XðYHF þ YLÞF�1 modM

¼ ððXYH modMÞ þ ðXYLF�1 modMÞÞmodM:

The left term of the last equation, XYH modM, can be calculated using the

classical modular multiplication that processes the upper part of the split multiplier

YH . The right term, XYLF
�1 modM, can be calculated using the Montgomery

algorithm that processes the lower part of the split multiplier YL. Both calculations

can be processed simultaneously. Since the split operands YH and YL are shorter in

length than Y, the calculations XYH modM and XYLF
�1modM are performed faster

than XYF�1 modM.

They have focused on application in the integer and mentioned the usability of

their method in the finite field. Thereafter, Kim and Jeon [5, 7] adapted their

bipartite technique to the modular multiplication in the finite fields for reducing the

latency and proposed multipliers over GFð2mÞ.

2.3 Modular exponentiation

The exponentiation is a crucial part of modern cryptographic algorithms. The most

commonly used algorithms for exponentiation are the binary methods (also called

square-and-multiply methods) [15]. Its basic idea is to compute modular exponen-

tiation by using the binary expression of exponent E and the exponentiation

operation is broken into a series of squaring and multiplication operations. This

© IEICE 2017
DOI: 10.1587/elex.14.20170458
Received May 1, 2017
Accepted May 16, 2017
Publicized June 1, 2017
Copyedited June 25, 2017

3

IEICE Electronics Express, Vol.14, No.12, 1–10



algorithm has the left-to-right (MSB) method and right-to-left method (LSB). The

right-to-left method can be used to compute modular squaring and modular multi-

plication concurrently. The right-to-left binary square and multiply algorithm is

represented as Algorithm 1 which computes the modular exponentiation starting

from the LSB of the exponent and proceeding to the left.

Algorithm 1. LSB binary modular exponentiation algorithm in GFð2mÞ
Input: M, E ¼ Pm�1

i¼0 ei2
i (where ei 2 f0; 1g), G

Output: C ¼ ME modG

Step 1. C ¼ 1;

Step 2. S ¼ M;

Step 3. for i ¼ 0 to m � 1 do f
Step 4. if (ei ¼ 1) then C ¼ C � SmodG;

Step 5. S ¼ S � SmodG;

Step 6. g

Note that modular squaring and multiplication can be performed simultane-

ously in order to improve speed of exponentiation [6, 12, 13, 14]. Using the

common-multiplicand method [13, 14], Choi and Lee [6] proposed the combined

systolic multiplier/squarer that computes modular squaring and multiplication

concurrently instead of computing them separately for the LSB-first exponentiation.

3 Proposed unified multiplication and squaring

In this section, we propose a unified algorithm to concurrently perform multi-

plication and squaring over GFð2mÞ. We adopt the bipartite modular multiplication

concept [10, 11, 5, 7] to decrease the latency required for calculating multiplication

and squaring over finite fields. Using common-multiplicand method [6, 13, 14], we

also decrease the space complexity by deriving common operations from bipartite

parts.

Now, we will derive a bipartite algorithm for performing multiplication and

squaring over GFð2mÞ in parallel. It is well known that xmmodG ¼ Pm�1
j¼0 gjx

j and

x�1modG ¼ xm�1 þPm�1
j¼1 gjx

j�1. Let k ¼ bm=2c and l ¼ dm=2e. For deriving

an efficient parallel architecture, we choose the Montgomery factor, F ¼ xbm=2c ¼
xk as selected in [5, 7]. Then, we can derive the following formula for the

Montgomery multiplication P and squaring S over GFð2mÞ.
P ¼ A � B � F�1modG ¼ A � B � x�kmodG

¼ ½b0Ax�k þ b1Ax
�kþ1 þ � � � þ bk�2Ax�2 þ bk�1Ax�1

þ bkA þ bkþ1Ax1 þ � � � þ bm�2Ax�kþm�2 þ bm�1Ax�kþm�1�modG

¼
Xk
i¼1

bk�iAx�imodG þ
Xl�1
i¼0

bkþiAximodG: ð1Þ

S ¼ A � A � F�1modG ¼ A � A � x�kmodG

¼ ½a0Ax�k þ a1Ax
�kþ1 þ � � � þ ak�2Ax�2 þ ak�1Ax�1

þ akA þ akþ1Ax1 þ � � � þ am�2Ax�kþm�2 þ am�1Ax�kþm�1�modG

© IEICE 2017
DOI: 10.1587/elex.14.20170458
Received May 1, 2017
Accepted May 16, 2017
Publicized June 1, 2017
Copyedited June 25, 2017

4

IEICE Electronics Express, Vol.14, No.12, 1–10



¼
Xk
i¼1

ak�iAx�imodG þ
Xl�1
i¼0

akþiAximodG: ð2Þ

As seen in (1) and (2), the multiplication result P and squaring result S can be

divided into two parts, respectively. One is based on the negative powers of x

and the other is based on the positive powers of x. P can be denoted by P ¼ Q þ R,

where Q ¼ Pk
i¼1 bk�iAx

�imodG and R ¼ Pl�1
i¼0 bkþiAx

imodG. Similarly, S can

be denoted by S ¼ T þ U, where T ¼ Pk
i¼1 ak�iAx

�imodG and U ¼Pl�1
i¼0 akþiAx

imodG.

If Montgomery multiplication and squaring are executed concurrently, the

components for the common operations can be shared and used only once for

Montgomery multiplication and squaring in order to reduce the area complexity.

We can derive the common operations, Ax�imodG and AximodG, in each bipartite

equation from (1) and (2).

For the derived common operations, we define �A
ðiÞ ¼ Ax�imodG (1 � i � k)

and AðiÞ ¼ AximodG (0 � i � l � 1). Then the equations can be expressed as
�A
ðiÞ ¼ Pm�1

j¼0 �aðiÞj xj and AðiÞ ¼ Pm�1
j¼0 aðiÞj xj, where �A

ð0Þ ¼ Að0Þ ¼ A. By using

xm modG ¼ Pm�1
j¼0 gjx

j and x�1modG ¼ xm�1 þPm�1
j¼1 gjx

j�1, �A
ðiÞ

and AðiÞ are

rewritten as

�A
ðiÞ ¼ �A

ði�1Þ
x�1modG ¼

Xm�1
j¼0

ð �aði�1Þjþ1 þ �aði�1Þ0 gjþ1Þxj ð3Þ

AðiÞ ¼ Aði�1ÞxmodG ¼
Xm�1
j¼0

ðaði�1Þj�1 þ aði�1Þm�1 gjÞxj: ð4Þ

Also, using the formulas of �A
ðiÞ

and AðiÞ, the terms Q, R, T, and U are

represented by the following equations. For deriving the identical structure, we

add z �A
ð0Þ

to Q and T, where z ¼ 0.

Q ¼
Xk
i¼1

bk�iAx�imodG ¼ z �A
ð0Þ þ

Xk
i¼1

bk�i �A
ðiÞ
; ð5Þ

R ¼
Xl�1
i¼0

bkþiAximodG ¼
Xl�1
i¼0

bkþiAðiÞ: ð6Þ

T ¼
Xk
i¼1

ak�iAx�imodG ¼ z �A
ð0Þ þ

Xk
i¼0

ak�i �A
ðiÞ
; ð7Þ

U ¼
Xl�1
i¼0

akþiAximodG ¼
Xl�1
i¼0

akþiAðiÞ: ð8Þ

From (5) to (8), the recurrence equations of Q, R, T, and U can be formulated as

QðiÞ ¼ Qði�1Þ þ z �A
ði�1Þ

; for i ¼ 1

Qði�1Þ þ bk�iþ1 �A
ði�1Þ

; for 2 � i � k þ 1,

(
ð9Þ

RðiÞ ¼ Rði�1Þ þ bkþi�1Aði�1Þ; for 1 � i � l; ð10Þ

T ðiÞ ¼ T ði�1Þ þ z �A
ði�1Þ

; for i ¼ 1

T ði�1Þ þ ak�iþ1 �A
ði�1Þ

; for 2 � i � k þ 1,

(
ð11Þ

U ðiÞ ¼ U ði�1Þ þ akþi�1Aði�1Þ; for 1 � i � l; ð12Þ
© IEICE 2017
DOI: 10.1587/elex.14.20170458
Received May 1, 2017
Accepted May 16, 2017
Publicized June 1, 2017
Copyedited June 25, 2017

5

IEICE Electronics Express, Vol.14, No.12, 1–10



where Qð0Þ ¼ Rð0Þ ¼ T ð0Þ ¼ U ð0Þ ¼ 0 and QðiÞ ¼ Pm�1
j¼0 qðiÞj xj, RðiÞ ¼ Pm�1

j¼0 rðiÞj xj,

T ðiÞ ¼ Pm�1
j¼0 tðiÞj xj, and UðiÞ ¼ Pm�1

j¼0 uðiÞj xj are ith intermediate results.

The equations f(3),(9),(11)g and f(4),(10),(12)g can be simultaneously exe-

cuted because there are no data dependency between computations of

f �AðiÞ
; QðiÞ; T ðiÞg and fAðiÞ; RðiÞ; U ðiÞg. Therefore, the results of multiplication and

squaring are represented as follows:

P ¼ Qðkþ1Þ þ RðlÞ ð13Þ
and

S ¼ T ðkþ1Þ þ U ðlÞ: ð14Þ
Then, the coefficients of QðiÞ, RðiÞ, T ðiÞ, and Uð0Þ can be computed as follows:

qðiÞj ¼
qði�1Þj þ z �aði�1Þj ; for i ¼ 1

qði�1Þj þ bk�iþ1 �a
ði�1Þ
j ; for 2 � i � k þ 1,

8<
: ð15Þ

rðiÞj ¼ rði�1Þj þ bkþi�1a
ði�1Þ
j ; for 1 � i � l; ð16Þ

tðiÞj ¼
tði�1Þj þ z �aði�1Þj ; for i ¼ 1

tði�1Þj þ ak�iþ1 �a
ði�1Þ
j ; for 2 � i � k þ 1,

8<
: ð17Þ

uðiÞj ¼ uði�1Þj þ akþi�1a
ði�1Þ
j ; for 1 � i � l; ð18Þ

where qð0Þj ¼ rð0Þj ¼ tð0Þj ¼ uð0Þj ¼ 0 and 0 � j � m � 1.

4 Proposed systolic arrays for unified multiplication and squaring

Based on the formulation used in the previous section, we present two efficient

semi-systolic arrays to compute unified multiplication and squaring in this section.

The semi-systolic arrays for computing f �A;Q; Tg and fA; R;Ug is presented in

Fig. 1(a) and Fig. 2(a), which are composed of m � ðk þ 1Þ VðiÞ
j and m � l WðiÞ

j

cells, respectively. The circuits of cells in semi-systolic arrays are illustrated in

Fig. 1(b) and Fig. 2(b), where the boxed D denotes 1-bit latch (flip-flop). Each VðiÞ
j

cell employs three 2-input AND gates, three 2-input XOR gates, and four 1-bit

(a) (b)

Fig. 1. (a) The semi-systolic array for computing f �A;Q; Tg (b) VðiÞ
j cell

© IEICE 2017
DOI: 10.1587/elex.14.20170458
Received May 1, 2017
Accepted May 16, 2017
Publicized June 1, 2017
Copyedited June 25, 2017

6

IEICE Electronics Express, Vol.14, No.12, 1–10



latches in order to compute �aðiÞj , qðiÞj , and tðiÞj in (3), (15) and (17). Similarly, each

WðiÞ
j cell employs three 2-input AND gates, three 2-input XOR gates, and four 1-bit

latches in order to compute aðiÞj , rðiÞj , and uðiÞj in (4), (16) and (18).

Fig. 3 shows a module for computing Qðkþ1Þ þ RðlÞ and T ðkþ1Þ þ U ðlÞ which

includes 2m 2-input XOR gates and 2m boxed D� components, where the boxed D�

denotes 1-bit latch only if m is even, otherwise it is ignored. The modules for

computation of f �A;Q; Tg and fA; R;Ug takes k þ 1 and l clock cycles, respectively.

If m is odd, k þ 1 ¼ l. Otherwise, k ¼ l. Therefore, if m is even, 1-bit latches are

required at input lines of RðlÞ and U ðlÞ before the computation of Qðkþ1Þ þ RðlÞ and
T ðkþ1Þ þ U ðlÞ in order to synchronize them.

The efficient unified architecture for Montgomery multiplication and squaring

over GFð2mÞ is depicted in Fig. 4. The latency of the proposed architecture requires
0:5m þ 2 clock cycles. Each clock cycle takes delays of one 2-input AND gate, one

2-input XOR gate, and one 1-bit latch. The space complexity of this architecture

requires 3m2 þ 3m 2-input AND gates, 3m2 þ 5m 2-input XOR gates, and

4m2 þ 4m 1-bit latches.

The VðiÞ
j cell calculates equations (3), (15), and (17) and the WðiÞ

j cell calculates

equations (4), (16), and (18). As we can see from Fig. 1(b) and Fig. 2(b), the VðiÞ
j

cell and the WðiÞ
j cell perform identical function with different inputs. Therefore,

one systolic array in Fig. 5 can calculate equations (3), (15), and (17) at the first

round and equations (4), (16), and (18) at the second round, respectively. The

Fig. 6 shows the module to compute equations (13) and (14). The Fig. 7 shows the

(a) (b)

Fig. 2. (a) The semi-systolic array for computing fA; R; Ug (b) WðiÞ
j

cell

Fig. 3. The module for computing Q þ R and T þ U

© IEICE 2017
DOI: 10.1587/elex.14.20170458
Received May 1, 2017
Accepted May 16, 2017
Publicized June 1, 2017
Copyedited June 25, 2017

7

IEICE Electronics Express, Vol.14, No.12, 1–10



unified architecture for Montgomery multiplication and squaring over GFð2mÞ,
where m is odd. When m is even, it has similar structure. The space complexity of

Fig. 7 is reduced by about half compared to Fig. 4.

Fig. 4. The proposed multiplier/squarer over GFð2mÞ

Fig. 5. The semi-systolic array for computing f �A;Q; Tg and fA; R; Ug

Fig. 6. The module for computing Q þ R and T þ U

© IEICE 2017
DOI: 10.1587/elex.14.20170458
Received May 1, 2017
Accepted May 16, 2017
Publicized June 1, 2017
Copyedited June 25, 2017

8

IEICE Electronics Express, Vol.14, No.12, 1–10



5 Complexity analysis and conclusion

As mentioned in subsection 2.3, Montgomery multiplication and squaring can be

performed in parallel in order to perform fast modular exponentiation. It can be

implemented by the unified multiplier/squarer or by two multipliers. Recently,

Choi and Lee [6] proposed the combined systolic array for performing multi-

plication and squaring in parallel. Kim and Jeon [5] proposed a semi-systolic

multipliers using bipartite method. Also they proposed an area-efficient semi-

systolic multiplier using bipartite method in [7]. A circuit comparison between

the proposed and the related multipliers is given in Table I.

For a comparison of the time and area complexity, we utilize the “SAMSUNG

STD 150 0.13m 1.2V CMOS Standard Cell Library”. Based on this library, we

estimated the time and area complexities of the proposed and the related multi-

pliers. As discussed in detail in [6], we adopt that AAND2 ¼ 6:68, TAND2 ¼ 0:094 ns,

AXOR2 ¼ 12:00, TXOR2 ¼ 0:167 ns, ALATCH1 ¼ 16:00, and TLATCH1 ¼ 0:157 ns,

where AGATEn denotes transistor count of an n-input gate and TGATEn denotes the

propagation delay of an n-input gate.

All multipliers in Table I has the same cell delay of TAND2 þ TXOR2 þ TLATCH1.

But the multiplier of Choi and Lee [6] has the latency of 3m clock cycles and the

latency of the others is about 0:5m clock cycles. Compared with the multiplier of

Choi and Lee, the proposed multipliers in Fig. 4 and Fig. 7 can reduce the space

complexity by 44.4% and 72.1% and the AT complexity by 90.7% and 95.3%,

respectively. The proposed multipliers in Fig. 4 and Fig. 7 have about 40.6%

greater space complexity and 40.8% greater AT complexity, compared with the

multipliers in [5] and [7], respectively. But our proposed multipliers can perform

multiplication and squaring in parallel for fast modular exponentiation.

In this paper, a semi-systolic architecture for Montgomery multiplication/

square for fast modular exponentiation over finite fields has been presented. We

induced an efficient algorithm which is highly suitable for the design of parallel

pipelined structures. We expect that our architecture can be efficiently used for

Fig. 7. The proposed area-efficient multiplier/squarer over GFð2mÞ

© IEICE 2017
DOI: 10.1587/elex.14.20170458
Received May 1, 2017
Accepted May 16, 2017
Publicized June 1, 2017
Copyedited June 25, 2017

9

IEICE Electronics Express, Vol.14, No.12, 1–10



various applications including crypto coprocessor design, which demand high-

speed computation, for security purposes.

Acknowledgments

The present research was conducted by the research fund of Dankook University

in 2015.

Table I. Comparison of the systolic arrays of multiplication and
squaring

Multipliers Choi-Lee [6] Kim-Jeon [5] Kim-Jeon [7] Fig. 4 Fig. 7

Array type systolic semi-systolic semi-systolic semi-systolic semi-systolic

Function AB and A2 AB AB AB and A2 AB and A2

Bipartite X O O O O

Throughput 1 1 1/2 1 1/2

Area complexity

AND2 3m2 2m2 þ 2m m2 þ 0:5m 3m2 þ 3m 1:5m2 þ 1:5m
−0.5

XOR2 3m2 2m2 þ 3m m2 þ 1:5m 3m2 þ 5m 1:5m2 þ 3:5m
−0.5

Latch 10m2 3m2 þ 3m 1:5m2 þ 2m 4m2 þ 4m 2m2 þ 4m
−0.5

Total 216:04m2 85:36m2 42:68m2 120:04m2 60:02m2

transistors þ97:36m þ53:34m þ144:04m þ116:02m
�17:34m

Time complexity

Cell delay 0.418 0.418 0.418 0.418 0.418

Latency 3m 0:5m þ 0:5 0:5m þ 1:5 0:5m þ 2 0:5m þ 2:5

Total delay 1:254m 0:209m þ 0:209 0:209m þ 0:627 0:209m þ 0:836 0:209m þ 1:045

Area-Time complexity

AT 270:91m3 17:84m3 8:92m3 25:09m3 12:54m3

complexity þ38:19m þ37:90m2 þ130:46m2 þ86:97m2

þ29:82m þ120:42m þ121:24m
−10.87

© IEICE 2017
DOI: 10.1587/elex.14.20170458
Received May 1, 2017
Accepted May 16, 2017
Publicized June 1, 2017
Copyedited June 25, 2017

10

IEICE Electronics Express, Vol.14, No.12, 1–10


