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Abstract: Test data compression is an effective methodology for reducing

test data volume and testing time. This paper presents a new test data

compression approach based on bit reversion, which compresses data more

easier by reversing some test data bits without changing the fault coverage.

As there are some don’t care bits in test set, when they are filled, many faults

will be repeatedly detected with multiple vectors. Correspondingly, a lot of

bits in the test set can be modified without affecting the fault coverage.

Experimental results show that the proposed method can increase compres-

sion ratio of code-based schemes by around 10%.
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1 Introduction

With the rapid development of IC (Integrated Circuit) fabrication processing, an

increasing number of transistors are integrated into one single chip, however, it

causes multiple increase of test data volume, which not only increases the testing

time but also exceeds the tester memory capacity [1]. Compressing test data is an

effective approach to reduce test data volume.

The goal of test data compression is to reduce the number of binary bits in

original test data which can be generated by the test generation tool after circuit

design. The compressed test set is stored in the automatic test equipment (ATE) and

a decompress circuit on chip is used to decompress the test data and apply it to the

circuit under test (CUT), which is shown in Fig. 1 [2]. The decompress circuit is

corresponding to the compression approach and is suitable for all the original test

set which using this compression approach.

The test data compression approaches can generally be classified into three

categories: code-based schemes, linear-decompression-based schemes and broad-

cast-scan-based schemes [3]. Code-based schemes mainly aim at given test sets, in

which original test data are divided into different symbols and each symbol is

replaced by a code word to form the compressed data. We don’t need to understand
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the internal structure information of the circuit under test, in addition, the fault

simulation and test generation are not needed. Therefore, these schemes are very

suitable for test data compression with embedded IP core circuits. According to the

differences of symbol division, the coding methods can be classified into two

categories. If the scheme encodes a fixed number of input bits, it belongs to the

“fixed” category. Similarly, schemes that encode a variable number of input bits are

classified under the “variable” category. Huffman coding is the best example of

“fixed” scheme. The idea with a Huffman code is to encode symbols that occur

more frequently with shorter code words and symbols that occur less frequently

with longer code words, such as selective Huffman coding (SHC) [4] and optimal

selective Huffman coding (OSHC) [5]. Other “fixed” schemes include dictionary-

based coding [6] and block merging coding [7] and so on. Variable categories

mainly include two methods: single run-length coding method and double run-

length coding method. Single run-length code compression techniques are based on

encoding runs of 0 s such as Golomb code [8], frequency-directed run-length (FDR)

code [9] and variable input Huffman code (VIHC) [10]. Double run-length code

compression techniques are based on encoding both runs of 0 s and runs of 1 s such

as extended FDR code (EFDR) [11], alternating run-length coding (AFDR) [12]

and mixed double run-length and Huffman coding (RL-HC) [13].

Many bits in test set are don’t care bits, which can be filled with any value (0 or

1) without decreasing the fault coverage of CUT. In fact, when don’t care bits are

filled, many faults will be repeatedly tested by multiple vectors [1]. Based on this, a

new approach to improve the compression ratio of test set is proposed in this paper,

which reverses some specified bits of test set after the don’t care bits are filled. This

bit reversion-based approach can make test data easier to be compressed without

decreasing the fault coverage. The experimental results indicate that our approach

can improve the compression ratio of coding by around 10%.

In this paper, Section 2 introduces some typical coding methods. Section 3

presents the theories and algorithms of test set reversion. Section 4 demonstrates

the experimental results. Section 5 concludes the whole paper.

2 Introduction of coding methods

This section introduces three representative coding methods, i.e., FDR code, EFDR

code and Optimal SHC, which come from single run-length coding methods,

double run-length coding methods and “fixed” schemes respectively.

1) FDR code

Run length refers to the sequence composed by the continuous same symbols.

FDR code is based on 0 run length, which means the continuous 0 with a tail 1. In

Fig. 1. Test compression structure
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FDR code, code words are constituted by the prefix and tail of the same length. In

group Ai, the length of prefix is i, and the prefix of each group represents the run

length of the first code of this group. From Group Ai to Aiþ1, the length of prefix

and tail increases one bit respectively. The size of the ith group is equal to 2i, that

is, group Ai contains 2i members. Run length of j is mapped to group Ai, where

i ¼ dlog2ðj þ 3Þe � 1. The FDR code word is shown in Table I.

An example of FDR code is illustrated. For test set T ¼ f00000001 1

000000001 000001g, FDR code is applied to obtain TFDR ¼ f110001 00

110010 1011g, which reduces 6 bits. From this example, it can be observed that

the efficiency of FDR code is mainly decided by the quantity of 1 in the test set.

The fewer the quantity of 1 is, the fewer the test data bits after coding will be.

2) EFDR code

In order to encode both runs of 0 s and 1 s, EFDR code adds one bit based on

FDR code to identify the run length is 0 or 1. 0 run length means the continuous 0

with a tail 1, while 1 run length means the continuous 1 with a tail 0. The EFDR

code word is shown in Table II.

For test set T ¼ f01 001 1111110 00000001g, EFDR code is utilized to obtain

the result of TEFDR ¼ f000 001 11011 0110000g, which reduces 2 bits. From this

example, it can be observed that when the binary bit of the test set flips (from 0 to 1

or from 1 to 0), there will be a run length. When the flip number is fewer in a test

set, the compression ratio will be higher.

3) Optimal SHC

Optimal SHC belongs to the coding method from fixed length to variable

length, which encodes the data blocks of certain length with variable-length code

words. Data blocks with high frequency are distributed with short code words and

vice versa so as to achieve the purpose of data compression. In order to reduce the

hardware cost, data blocks with high frequency apply Huffman coding while the

ones with low frequency will not be encoded but introduced by ATE directly.

Table I. FDR code

Group Run-length Group prefix Tail Code word

A1

0
0

0 00

1 1 01

2 00 1000

A2

3
10

01 1001

4 10 1010

5 11 1011

6 000 110000

A3

7
110

001 110001

. . . . . . . . .

13 111 110111

. . . . . . . . . . . . . . .

© IEICE 2017
DOI: 10.1587/elex.14.20170502
Received May 14, 2017
Accepted June 5, 2017
Publicized June 21, 2017
Copyedited July 10, 2017

4

IEICE Electronics Express, Vol.14, No.13, 1–11



The following example will illustrate the process of optimal SHC. In Table III,

the test set T is composed by 5 vectors of 16 in length. After dividing the test set T

into data blocks of 4 in length, the second column and third column in the table

list each category of data blocks and their frequencies. For example, if only the data

blocks with the first three highest frequencies are encoded, the frequency of

uncoded blocks will be 2=20 þ 1=20 ¼ 3=20. Subsequently, the data blocks with

the highest frequencies like 1010, 0000, 1111 and uncoded blocks will apply

Huffman coding, which is shown in Fig. 2. The data block 1010 with the highest

frequency will be represented with only one bit of 0, while the uncoded blocks

need to add the identifying bits of 111 before the data block (such as encoding 0001

into 111 0001), which will be 7 bits. The compression ratio in this case is equal to

38.8%. Therefore, it can be concluded that the fewer the uncoded data blocks in test

set are, the higher the compression ratio will be.

3 Bit reversion theories and algorithms

To understand the bit reversion theories of test set, the concept of test redundancy

must be defined first.

Definition 1: In test set T, the quantity of test vectors which can detect a specified

fault is called the test redundancy of this fault. The average value of test

redundancy of all faults is called as the average test redundancy rate of test set T.

Table II. EFDR code

Group
Run-
length

Group
prefix

Tail
Code word
runs of 0 s

Code word
runs of 1 s

A1

1
0

0 000 100

2 1 001 101

3 00 01000 11000

A2

4
10

01 01001 11001

5 10 01010 11010

6 11 01011 11011

7 000 0110000 1110000

A3

8
110

001 0110001 1110001

. . . . . . . . . . . .

14 111 0110111 1110111

. . . . . . . . . . . . . . . . . .

Table III. Division of test set and frequency of different blocks

Test set T Different blocks Frequency

1010 0000 1010 1111 1010 9/20

1111 0000 1010 0001 0000 5/20

1010 0000 0010 1010 1111 3/20

0000 1010 1010 0000 0001 2/20

1010 1111 1010 0001 0010 1/20
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The average test redundancy reflects the degree of a single fault in a circuit

being repeatedly detected by test set T. Table IV illustrates the test redundancy rate

before and after X (don’t care bits) filling.

It can be observed that after X filling in the test set, the test redundancy will

increase. Some specified bits in the test set can be reversed without decreasing the

fault coverage because of the test redundancy. When the test set changes to benefit

the compression, the compression ratio will be improved.

FDR code is taken as the example to illustrate the basic process of test set

reversion. As section 2 has mentioned, the purpose of test set reversion is to reduce

the number of 1. The algorithm 1 illustrates the basic process of test set reversion:

For each 1 s in the test set T, change it to 0 s if the fault coverage does not reduce.

Algorithm 1. TestSetReversion

Coverage FaultCoverage(T) //solve fault coverage of T

FOR bit IN T //bit is a certain bit in T

IF bit ¼ 1 //turn 1 of T into 0

bit  0

//if the fault coverage is affected, restore

IF Coverage ≠ FaultCoverage(T)

bit  1

Fig. 2. Optimal SHC

Table IV. Average test redundancy rate before and after X filling

Circuit X not filled X filled with random bits

s5378 8.6 24.9

s9234 8.8 26.4

s13207 7.5 53.8

s15850 7 27.6

s38417 7.5 22.1

s38584 6.2 32.1

Average 7.6 31.2
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Factors affecting the test set reversion ability include average redundancy,

distribution of test redundancy and bit reversion method. Different reversion

strategies are needed for different coding methods. Three general algorithms will

be listed as follows.

1) Single run-length reversion algorithm

The purpose of bit reversion for single run-length coding method is to reduce

the quantity of 1 s in the test set.

Definition 2: Reverse all the bits 1 of a column in test set successively according to

a certain order. If the fault coverage of the whole test set after reversing the bit is

not affected, this bit will be reversed. The quantity of reversed bits is called the

reversion weight of the column (RWC).

Algorithm 2. SingleRunLengthReversion

WHILE T not empty //when test set T is not empty

/�m column is randomly selected from T to find out the maximum column of

reversion right�/
MaxColumn 0

MaxWeight  0

FOR i 1 to m

Column ¼ RandomChoose(T)

IF MaxWeight < weight(Column,0)

MaxColumn Column

MaxWeight  weight(Column,0)

/�n types of reversion order is formed randomly to find out the maximum order of

reversion right �/
MaxOrder  0

MaxWeight  0

FOR j 1 to n

Order ¼ RandomOrder()

IF MaxWeight < weight(MaxColumn, Order)

MaxOrder  Order

MaxWeight  weight(MaxColumn, Order)

/�find the proper column and reversion order and take this column as this order for

reversion and mark it as reversed.�/
ReverseColumn(MaxColumn, MaxOrder)

Remove(MaxColumn)

The single run-length reversion algorithm is shown as algorithm 2. Firstly, pick

up randomly m columns from the test set, and selects among of them the column

with the maximal RWC. This column is called the MaxColumn. Secondly, for the

MaxColumn generate randomly n different orders and select an order in the way

that the maximal RWC can be obtained if the flips are conducted. This order is

called the MaxOrder. Finally, reverse all the bits 1 for the MaxColumn in the order

of the MaxOrder, and sign subsequently the MaxColumn that has been reversed.

The three steps are repeated until all the bits 1 in the test set are tried.

2) Double run-length reversion algorithm

The purpose of test set reversion for double run-length coding method is to

reduce the quantity of flips. A consecutive sequence of equal bits is called non-flip
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sequence. For test set T ¼ f0 111 000 1111111 00000000g, the non-flip se-

quences are 0, 111, 000, 1111111 and 00000000. The shortest non-flip sequence

will be firstly reversed to reduce the flip number, and then T ¼ f1 111 000

1111111 00000000g. If the fault coverage of test set T does not change, we

continue to reverse the shortest non-flip sequence at present, get T ¼ f1 111

111 1111111 00000000g. The whole algorithm is shown in algorithm 3.

Algorithm 3. DoubleRunLengthReversion

Coverage FaultCoverage(T) //solve the fault coverage

FOR i 1 to m //reverse the flip string with length less than i

FOR NotFlipString IN T // flip string in T

If length(NotFlipString) < i

Reverse(NotFlipString) // reverse flip string

//if the fault coverage is affected, restore

IF Coverage ≠ FaultCoverage(T)

Reverse(NotFlipString)

3) “Fixed” reversion algorithm

“Fixed” scheme divides test set into blocks of the same fixed length for coding

respectively. There are many types of “fixed” scheme, but there is one common

point: In coding process, the current data block is compared with the target blocks.

If they are equal, a corresponding code word will be assigned to the current block,

if not, extra bits will be added in front of the current block to distinguish it from the

code words. Therefore, for “fixed” scheme, the purpose of reversion is to make the

number of uncoded blocks smaller while applying short code words for coded

blocks.

The reversion algorithm is shown in algorithm 4. For “fixed” schemes, the test

set T is divided into blocks with fixed length. All of the blocks are grouped into one

set, named B. Similarly, the “target blocks” are grouped into a set, named D. For

each blocks in B, it will be replaced with one of the target blocks in D, if the replace

do not change the fault coverage. The target blocks are updated after every loop.

This algorithm is repeated until no blocks can be replaced.

Algorithm 4. BlockReversion

Coverage FaultCoverage(T) //get the fault coverage of T

D ¼ GetDestBlock() //get the original target block D

//for each block in B

//replace each block of dest in D without affecting the fault coverage ratio

FOR block IN B

FOR dest IN D //target block

block  dest

IF Coverage ¼ FaultCoverage(T) //find suitable block

BREAK

//if no suitable block is found in D, restore the block

IF Coverage ≠ FaultCoverage(T)

recovery(block)

update(D) // update target block set© IEICE 2017
DOI: 10.1587/elex.14.20170502
Received May 14, 2017
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4 Experimental results

We implemented the bit reversion algorithm using C++ and verified its effective-

ness on the ISCAS’89 benchmark circuits. Six largest circuits are selected as the

experimental circuits, and the test sets are generated by the Mintest ATPG [14].

Fault simulator “HOPE” [15] is used for fault simulation. Certainly, the test set

will be generated by some specific methods during test phase after the design for

every actual circuit, and our approach can be suitable for any given original test set.

Moreover, bit reversion-based approach has an advantage that requires no new

decompress circuit, but uses the existing decompress circuit corresponding to such

as FDR, EFDR coding methods and so on. As a result, there is no additional

overhead in the process of decompression.

Table V compares the compression ratio changes of three single run-length

coding methods before and after reversion (Golomb [8], FDR [9], VIHC [10]). The

first column is circuit name, the 2–4 columns are the compression ratio of original

test set, the 5–7 columns are the compression ratio of test set after reversion. It can

be observed from the table that the compression ratio has improved 7.42%∼11.20%
after reversion.

As shown in Table VI, after bit reversion, the compression ratio of double run-

length reversion has improved 8.42%∼12.07% (AFDR [12], EFDR [11], RL-HC

[13]). The double run-length reversion algorithm can better improve the compres-

sion ratio of test set than single run-length reversion algorithm. This is because the

single run-length reversion algorithm merely fills don’t care bits of test set into 0,

which makes the redundancy distribution uneven and influences the effects of test

set reversion.

Table VII shows the results of Optimal SHC [5] for “fixed” scheme. Compared

to the previous two methods, the compression ratio of fixed scheme has improved

more by 12.7% with the final compression ratio of 81.22%, exceeding the majority

of code-based compression methods.

Finally, we compare test power [16] between original test set and test set after

bit reversion. Table VIII gives the average power and peak power of experimental

circuits for each method. The single run-length reversion algorithm makes the

Table V. Compression ratio comparison of single run-length coding
methods

Circuit
Original Test set reversion

Golomb FDR VIHC Golomb FDR VIHC

s5378 37.11 47.98 51.78 48.63 57.83 60.52

s9234 45.25 43.61 47.25 53.63 50.36 55.06

s13207 79.74 81.3 83.51 83.03 83.40 85.86

s15850 62.82 66.21 67.94 70.55 72.37 74.49

s38417 28.37 43.37 53.36 57.27 62.69 67.19

s38584 57.17 60.93 62.28 64.56 65.60 67.55

Average 51.74 57.23 61.02 62.94 65.38 68.44
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average power consumption and peak power reduce by around 9%, while double

run-length reversion algorithm makes those reduce by almost a half. This is because

that double run-length reversion algorithm aims to reduce the number of bit flips

while the power consumption is produced due to the bit flips of test set. The

average power consumption of Optimal SHC increases by 25.73% but the peak

power remains almost the same. In fact, the power consumption of “fixed” schemes

can be controlled, which needs to select the blocks with few flips as the target

blocks, and this will reduce some compression ratio of “fixed” schemes.

5 Conclusion

We propose a new test data compression approach based on bit reversion, which

makes it easier to compress data by reversing some bits of the test set without

decreasing their fault coverage. Although the use of bit reversion-based approach

Table VI. Compression ratio comparison of double run-length coding
methods

Circuit
Original Test set reversion

AFDR EFDR RL-HC AFDR EFDR RL-HC

s5378 50.77 53.67 53.75 63.36 63.51 65.89

s9234 44.96 48.66 47.59 62.04 61.34 66.07

s13207 80.23 82.49 82.51 85.91 85.74 88.63

s15850 65.83 68.66 67.34 76.02 75.85 78.65

s38417 60.55 62.02 64.17 69.95 69.49 72.38

s38584 61.13 64.28 62.40 75.24 74.39 78.55

Average 60.58 63.30 62.96 72.09 71.72 75.03

Table VII. Compression ratio comparison of “fixed” scheme

Circuit
Original Test set reversion

Optimal SHC Optimal SHC

s5378 59.60 74.94

s9234 60.00 77.58

s13207 85.30 89.75

s15850 72.20 82.77

s38417 64.50 76.77

s38584 69.50 85.52

Average 68.52 81.22

Table VIII. Comparison of power consumption

Test set
Single run-length Double run-length Optimal SHC

Average Peak Average Peak Average Peak

Original 58281 207116 38242 177852 111088 193153

Reversed 53088 187268 22819 73660 139670 186601
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requires the fault simulation process, a higher compression rate can be achieved.

Therefore, more storage space and more test application time can be saved in the

process of testing a large number of chips. From this point of view, our approach

has very important practical significance.

In order to fully verify the effectiveness of our approach, we propose some

general algorithms for three types of coding methods. The experimental results

indicate that the proposed approach can greatly improve the compression ratio of

test data, and reduce test power consumption to a certain extent.

Besides code-based schemes, linear-decompression-based schemes and broad-

cast-scan-based schemes can also apply our approach.
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