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Abstract: In this brief, we propose a novel method which realizes conflict-

free strategy in memory-based FFT, of which the hardware complexity is

simplified, since only a few extra registers are needed and the control logic

is identical in all stages. In addition, we present a modified signal flow graph

to fit for the proposed conflict-free strategy. The modified signal flow graph

derives from the mixed-radix signal flow graph and has constant geometry

property. Furthermore, continuous-flow is adopted to increase the through-

put. Thus, the proposed FFT processor has better performance compared

with the previous memory-based FFT processors. Simulation result shows

that for the proposed 8 to 2048-point FFT processor, the maximum fre-

quency is 400MHz by using a 65-nm CMOS technology, and the area is

0.45mm2 in the same condition.
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1 Introduction

Fast Fourier Transform (FFT) is the most important operation in digital signal

processing, and is widely used in digital communication, radar system and image

processing system, etc. Two kinds of commonly used FFT architectures are pipe-

lined architecture [1, 2, 3, 4] and memory-based architecture [5, 6, 7, 8, 9]. The

pipelined architecture achieves a higher throughput, but also inevitably with larger

resource consumption and power consumption, since it uses independent process-

ing element in each stage. The memory-based architecture has a lower throughput,

but it has smaller resource consumption and power consumption, since it reuses the

same processing elements in all stages.

In this brief, we pay more attention to the memory-based architecture due to the

consideration of the area. Memory-based FFT is composed of memory, butterfly

unit and corresponding control logic. The memory is used to store the input data,

the temporary data and the ultimate result. Since multiple data are written into one

single memory simultaneously when processing the storage operation, there exists

the problem of address conflict. In order to solve the problem, conflict-free strategy

is proposed.

The conflict-free strategies proposed by [8] and [10] adopt multiplexers to

change the output order in each stage. The storage order in each stage is different,

thus the control logic varies in each stage. To realize the reordering, extra multi-
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plexers are needed. Hence, it adds extra multiplexers and the control logic is

relatively complicated.

To optimize the conflict-free strategy further, we propose a novel method, using

which the resource consumption is reduced compared with [10]. The proposed

conflict-free strategy is fit for constant geometry signal flow graph in [11, 12].

Besides, the property of constant geometry signal flow graph is that all stages are

identical. By using the property, the logic becomes uniform which simplify the

design.

In order to improve the performance of memory-based FFT, two methods are

usually used. One way is to adopt high-radix butterfly unit, and the other is to adopt

several parallel butterfly units. Of course, it is a tradeoff between the resource

consumption and the performance. The proposed FFT processor adopts radix-4/2

mixed-radix algorithm to realize the tradeoff. The proposed mixed-radix signal flow

graph is modified to obtain the constant geometry property. By using the property

of the modified mixed-radix signal flow graph, arbitrary 2n-point FFT processor can

be implemented. In order to increase the throughput, two 2048-word memories are

used to implement the continuous-flow computation.

The organization of this paper is shown as follows. Section II describes the

modified signal flow graph for mixed-radix algorithm. Section III describes the

design issue of the proposed FFT processor. Section IV focuses on the implemen-

tation and performance evaluation. Finally, the paper is concluded in Section V.

2 Modified signal flow graph for mixed-radix algorithm

In order to realize arbitrary 2n-point FFTwith constant geometry property, the radix

must equals to 2. Unfortunately, the performance is worse if the radix equals to 2.

So we propose a modified radix-4/2 mixed-radix signal flow graph which has

constant geometry property to get better performance. By using the proposed signal

flow graph, the proposed conflict-free strategy can be obtained.

2.1 Conventional radix-4/2 mixed-radix algorithm

The Radix-4/2 mixed-radix algorithm and the radix-4 algorithm have similar

structures in signal flow graph. Through combining the two algorithm, arbitrary

2n-point FFT can be implemented.

The N-point conventional radix-4/2 mixed-radix FFT is defined as follow:

XðkÞ ¼
XN�1
n¼0

xðnÞWnk
N ; 0 ≦ k ≦ N � 1 ð1Þ

¼
X1
n0¼0

X3
n1¼0

� � �
X3

nL�1¼0
xðnL�1; nL�2; . . . ; n1; n0ÞWnk

N ð2Þ

Where

nk ¼ n0 þ 2 �
XL�2
i¼0

niþ14i
 ! XL�1

i¼0
ki4

i

 !

Where L equals to the number of stage for the radix-4/2 mixed-radix FFT

algorithm
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Where

nL�1 ¼ 0; 1; 2; 3

nL�2 ¼ 0; 1; 2; 3

� � � � � �
n1 ¼ 0; 1; 2; 3

n0 ¼ 0; 1

And

kL�1 ¼ 0; 1

kL�2 ¼ 0; 1; 2; 3

� � � � � �
k0 ¼ 0; 1; 2; 3

Using the formula above, the signal flow graph of the radix-4/2 FFT and the

corresponding twiddle factors in each stages can be obtained. The conventional

radix-4/2 mixed-radix signal flow graph is shown in Fig. 1.

2.2 Modified signal flow graph for mixed-radix algorithm

According to the theory of signal flow graph, it is known that the signal flow graphs

before and after transformation are equivalent as long as the relative operation

position of each node maintains unchanged. Thus, in order to obtain the modified

signal flow graph, we move the node and corresponding twiddle factors in Fig. 1.

The output data in each stage are connected to the input node of the next stage

in sequence. By using the strategy mentioned, the modified signal flow graph is

obtained which is shown in Fig. 2.

Fig. 2 describes a 32-point FFT signal flow graph, and shows that all stages are

totally identical. Using this modified signal flow graph, the proposed conflict-free

strategy can be realized.

Fig. 1. Conventional radix-4/2 mixed-radix signal flow graph.
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3 Design issue of the FFT processor

3.1 Conflict-free strategy

In this section, a novel conflict-free strategy is proposed. The method solves the

address conflict by using the proposed signal flow graph which is illustrated in

Fig. 2. The data flow chart in Fig. 3 corresponds to the modified signal flow graph

in Fig. 2. In this 32-point FFT computation, a pair of memory is used to store input

data, intermediate data and ultimate result. Each memory consists of four banks.

The depth of each bank equals to 2. Each address in each bank stores four data.

First, four input data are combined together one by one. Then the combined

data are stored in Memory 1 in sequence. The storage sequence of the input data is

shown in the first column of Fig. 3.

After all the input data are stored, four data that follows the butterfly compu-

tation positions in the first stage of Fig. 2 are read out simultaneously. The four data

in Memory 1 are stored in different banks, thus the reading address conflict does

not exist anymore. For example, data 1, data 9, data 17 and data 25 in Memory 1

are read out concurrently at first, and data 2, data 10, data 18 and data 26 in

Memory 1 are read out concurrently next time. Because each address stores four

input data, we only extract one of them each time.

After the four data in Memory 1 are read out simultaneously, the fetched data

are input to the shared butterfly unit simultaneously as shown in the Butterfly

Radix-4 of Fig. 3. After the butterfly computation, four results of the butterfly

computation are generated. According to the input order of the second stage of the

modified signal flow graph as shown in Fig. 2, four results are combined together

and stored in Memory 2 in Fig. 3. For example, the butterfly results of data 1,

data 9, data 17 and data 25 in Memory 1 are combined together and stored in the

first address of Bank 0 in Memory 2. And the remaining storage sequence of the

result of butterfly computation in Stage 1 is shown in the second column in Fig. 3.

Fig. 2. Modified radix-4/2 signal flow graph.
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After all the operations above are finished, the first stage of FFT computation is

completed. Because the second stage of signal flow graph is identical to the first

stage of signal flow graph, the data flow chart in Stage 2 is identical to Stage 1.

The computation in Stage 3 is radix-2 computation. Thus, the data flow chart is

a little bit different. According to the Stage 3 in Fig. 2, the computation sequence

can be obtained. For example, the first data and the fifth data in Stage 3 operate

radix-2 computation. The first data in Stage 3 which is stored in the first address in

Bank 0 is data 1, as shown in the third column in Fig. 3. And the fifth data in

Stage 3 which is stored in the second address in Bank 0 is data 9, as shown in the

third column in Fig. 3. Data 1 and data 9 conduct radix-2 computation, and the

results are stored following the sequence in the last stage of Fig. 2. Thus, they are

stored in the first address of Bank 0 in Memory 2, as shown in the fourth column

in Fig. 3.

In order to get better performance, two pairs of radix-2 computation are

conducted simultaneously. For example, data 1 and data 9, data 3 and data 11 in

column 3 are computed in parallel. The results of them are combined as one data

and stored in the first address in Bank 0 in Memory 2, as shown in the fourth

column in Fig. 3. The storage sequence of the result of butterfly computation in

Stage 3 is shown in the fourth column in Fig. 3.

The address conflict is solved by using the proposed conflict-free strategy. The

proposed method avoids the writing address conflict, since it writes the four data to

one address instead of four. In addition, the proposed method avoids the reading

address conflict, since it reads the four data from four different banks instead of

one bank.

3.2 Proposed FFT architecture

The proposed architecture of the memory-based FFT processor based on the

modified mixed-radix signal flow graph is shown in Fig. 4. By using the proposed

architecture, the conflict-free strategy and the corresponding data flow chart

mentioned in section A can be realized.

To achieve the continuous-flow, increase the throughput and reduce the latency,

the architecture contains two memories and each memory is comprised of four

banks.

Fig. 3. Conflict-free strategy for constant geometry approach.
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The Register 1 in Fig. 4 is used as a shift register and it stores the input data

one by one. After four input data are stored in the shift register, they are written into

one address of the memory as a whole data.

Before radix-4 butterfly computation, four input data of the butterfly unit must

be output from the four banks of one memory. Each bank outputs a whole data

which contains four data, the multiplexers in the second column are used to select

the definite part of the whole data as the input data of the butterfly unit (BU4/2).

The Register 2 in Fig. 4 stores the four results of the BU4/2 simultaneously.

After the storage, the whole result is written into the other memory.

Before radix-2 butterfly computation, two pairs of input data of the butterfly

unit must be output from one of the four banks of one memory. In order to realize

computation corresponding to the last stage in Fig. 2, the two whole data which

contain four data are output from the definite bank one by one and input to the

butterfly unit. s2 and s3 in Fig. 4 are used to control the data path.

The control logic is used to generate the control signal and control the design to

work in the desired way mentioned in Fig. 3. BU4/2 in Fig. 4 stands for butterfly

unit and it can operate both radix-4 and radix-2 butterfly computation. ROM in

Fig. 4 stores the twiddle factors and is also controlled by the control logic.

The more detailed structure of BU4/2 is shown Fig. 5. When conducting radix-

4 computation, the four data are input directly to the basic BU4/2 module.

Whereas, when conducting radix-2 computation, the two consecutive whole

data which contains four data are stored in the Register 1 and Register 2 in Fig. 5.

Then two pairs of data are selected from Register 1 and Register 2 through s3 and

s4 and written into the basic BU4/2 module.

The basic BU4/2 is shown in Fig. 6, and it reuses the resource of the radix-4

butterfly unit to implement two pairs of the radix-2 or radix-4 computation. The

proposed basic BU4/2 is composed of three complex multipliers and eight complex

adders. The multiplexers in Fig. 6 determine the data path and the radix selection

concurrently.

Fig. 4. The architecture for the proposed 32-point FFT processor.
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3.3 Variable-point strategy

Based on the modified mixed-radix signal flow graph and the conflict-free strategy

mentioned above, the configurable strategy can be obtained. For 8 to 2048-point

configurable FFT, two groups of memories are needed. Each group of memory

contains four memory banks whose depth equals to 128 and width equals to 128.

When conducting configurable FFT, the maximum address in memory decreases as

a result of the decrease of the FFT length. For example, when the point decreases

to 1024 from 2048, the maximum address decreases to 64 from 128. Besides, the

twiddle factor extraction follows the similar way.

Fig. 6. The architecture of basic radix-4/2 butterfly unit.

Fig. 5. The architecture of radix-4/2 butterfly unit.
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4 Implementation and performance evaluation

The resource consumption of memory-based FFT processor is mainly determined

by the memory and the radix of the processor. To design N-point FFT processor, N

or 2N word memory is needed. By using higher radix algorithm and parallel

computation, the iteration cycle decreases while it consumes more arithmetic

logical units. The proposed 8 to 2048-point FFT processor which adopts radix4/

2 algorithm to balance the iteration cycle and resource consumption achieves a

maximum frequency of 400MHz and an area of 0.45mm2 by using a 65-nm

CMOS technology. Table I compares various memory-based FFTs.

Paper [9] in Table I adopts the conflict-free strategy which adds extra multi-

plexers and corresponding control logic that makes the design complicated. By

using the radix-4 algorithm, [9] can only realize FFTwhose length is power of four.

The memory size in [9] is less compared with the proposed FFT. However, the FFT

in [9] can’t realize continuous flow, whereas the proposed one can realize the

continuous flow so that it can increase the throughput. In order to compare the area

further, arithmetic unit should also be taken into account. Table I shows that the

proposed one and [9] consume the same amount of arithmetic units.

Another significant performance for the FFT processor is the execution time

which is composed of total processing time and load-input-data time. In order to

compare the time fairly, we extend the point number of the proposed FFT processor

to 4096 by using the proposed structure. Table I shows that the proposed FFT

processor and FFT processor in [9] have the same total processing time which is

61.44µs under a working frequency of 100MHz. On the other hand, the load-

input-data time of the proposed FFT is 40.96µs, which is half of [9]. However,

considering the load frequency of the proposed FFT is twice of [9], they have the

Table I. Comparison for previous works and this work

proposed [9] [10]

radix 4/2 4 23

Parallel Process 4 4 4

Memory size 2N N 2N

Memory bank 4 4 4

Iteration logN
2 =2 logN

2 =2 -

Cycle per iteration N=4 N=4 -

Latency of butterfly unit 4 - 0�5
Total processing time NðlogN

2 Þ=8 NðlogN
2 Þ=8 NðlogN

2 Þ=12
Execution time for 4096-point (µs)

(Tc þ Tproc)
40:96 þ 61:44 81:92 þ 61:44 -

Area/Normalized for 2048-point (mm2) 0.45 - 0.86

Complex adder 8 8 12

Complex multiplier 3 3 4

Constant multiplier 0 0 4

Continuous flow YES NO YES
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same load-input-data time if under the same load frequency. Thus, they have

identical execution time. Hence, the proposed FFT processor has a similar perform-

ance/resource ratio compared with [9].

Paper [10] which adopts radix-23 algorithm and uses a generalized conflict-free

address scheme for the FFT processor does not mention the execution time of the

memory-based FFT explicitly. In this paper, we proposed an equivalent way to

evaluate the execution time of the proposed one and [10].

For the memory-based FFT, the execution time equals to Tload þ ðTi þ
TbÞ*Iteration, where Tload stands for the time of loading the input data, Ti stands

for cycles per iteration and Tb stands for the latency of the butterfly unit.

For the memory-based FFT architecture, Tload is a constant which equals to the

point number N, and Tb is a constant for specific butterfly unit. Through adding

pipeline in the butterfly unit, Tb increases and the frequency of the FFT processor

enhances at the same time. Compared with Ti, Tb is negligible, since the maximum

Tb of the butterfly unit structure in [10] is only five, and the Tb of the proposed one

is only four. Thus the execution time for the memory-based architecture approx-

imately equals to Tload þ Ti*Iteration. Considering Tload is a constant which equals

to the point number N, the execution time is proportional to Ti*Iteration which is

total processing time mentioned in Table I. According to Table I and the analysis

above, the total execution time of [10] is less compared with the proposed FFT.

However, [10] consumes more resource. The memory size in [10] is the same as

the proposed one, but it consumes more arithmetic units. It consumes four more

complex adders, one more complex multipliers and four more constant multipliers.

In order to compare the resource consumption quantitatively, we transform them

under the same condition and obtain the definite area of each FFT. Paper [10]

adopts a 55-nm CMOS technology and the area of [10] is 0.615mm2. Through the

function below, we normalize the area to 65-nm technology as shown in Table I.

According to Table I, the area of the proposed FFT is 52% of FFT in [10].

Norm:Area ¼ Area

ðLmin=65 nmÞ2
In order to compare the overall performance with [10], we multiply the area and

total processing time. The result of the multiplication reflects the overall perform-

ance of the FFT processor. The area-total-processing-time product for the proposed

2048-point FFT equals to 1267.2, while the product for [10] equals to 1614.5. Thus,

the proposed FFT processor has a better performance compared with [10].

In conclusion, the way proposed in this brief is a desirable way to realize

memory-based FFT processor.

5 Conclusion

In this paper, we propose an arbitrary 2n-point FFT processor by using a modified

signal flow graph and corresponding novel conflict-free strategy, so that the logic

control is simplified, the hardware resource is reduced, and the frequency is higher.

Thus, our proposal is very suitable for real-time and lower-resource consumption

system.
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