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Abstract: An improved method to approximate max* operation with Taylor

Series for Turbo decoder is presented. Multiple expansion points are adapted

to improve the BER performance. The parameter δ is introduced to deter-

mine suitable expansion points. The simulation results show that the pro-

posed method with three expansion points when δ is set to 0.025 has almost

identical performance compared with ideal Log-MAP algorithm and outper-

forms both PWL method and the original Maclaurin series method. The

architecture of proposed method is also presented for implementation.

Compared with PWL methods, the proposed scheme has reduced computa-

tional complexity and is feasible for hardware implementation. Besides,

the architecture of proposed method keeps identical for different number

of expansion points.
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1 Introduction

Turbo code is firstly proposed by Berrou and Glavieux in 1993 [1]. It has been

widely adapted in modern communication systems for its excellent performance.

The maximum a posteriori (MAP) algorithm is adapted as the decoding algorithm

for component decoders and is commonly performed in logarithmic domain in

which multiplications and exponential operations can be transformed to log

exponential sum. The kernel of computation involved in decoding can resort to

max� operation. It’s well known that the implementation of Turbo decoder is quite

area and resource consuming for the entire baseband receiver. So it’s necessary to

exploit the method to simplify max� operation.

With the application of Jacobian logarithm, the max� operation can be ex-

pressed by the sum of maximum variable and a correction term. Several methods

are proposed to approximate the max� operation with reduced complexity, includ-

ing Max-Log-MAP [2], LUT approach [3], Constant-Log-MAP [4], linear-Log-

MAP [5]. An exponential approximation is proposed in [6]. The correction term

approximated by the first order Maclaurin Series expansion around zero was

proposed in [7] for the first time. In [8], max� operation was dealt with piecewise

linear (PWL) approximation terms with different r values. The performance will be

improved as the number of PWL terms increases. However, the cost is greatly

increased complexity. The combination of linear approximation and constant is

proposed in [9] while the method combining LUT and linear approximation is

proposed in [10]. In [11], a method based on multivariable Taylor Series for

n-input (n � 4) max� operation is proposed.

Inspired by the method proposed in [7] and [11], we extend the method with

multiple expansion points to further improve the approximation precision and BER

performance. Besides, the principle to select expansion points is also proposed. We

found that the PWL method proposed in [8] can also be expressed by proposed

method with corresponding expansion points. Compared with the PWL methods,

the proposed method presents lower computational complexity and simpler struc-

ture for implementation. Besides, the computational complexity of proposed

method is almost unchanged as the number of the expansion points increases.
© IEICE 2018
DOI: 10.1587/elex.14.20171145
Received November 20, 2017
Accepted November 28, 2017
Publicized December 13, 2017
Copyedited January 10, 2018

2

IEICE Electronics Express, Vol.15, No.1, 1–8

http://dx.doi.org/10.1109/TIM.2007.894228
http://dx.doi.org/10.1109/TIM.2007.894228
http://dx.doi.org/10.1109/TIM.2007.894228
http://dx.doi.org/10.1109/TIM.2007.894228
http://dx.doi.org/10.1109/LCOMM.2009.090537
http://dx.doi.org/10.1109/LCOMM.2009.090537
http://dx.doi.org/10.1109/LCOMM.2009.090537
http://dx.doi.org/10.1109/LCOMM.2009.090537
http://dx.doi.org/10.1109/LCOMM.2009.090537
http://dx.doi.org/10.1016/j.jfranklin.2012.02.003
http://dx.doi.org/10.1016/j.jfranklin.2012.02.003
http://dx.doi.org/10.1016/j.jfranklin.2012.02.003
http://dx.doi.org/10.1016/j.jfranklin.2012.02.003
http://dx.doi.org/10.1016/j.jfranklin.2012.02.003
http://dx.doi.org/10.1016/j.jfranklin.2012.02.003
http://dx.doi.org/10.1016/j.jfranklin.2012.02.003
http://dx.doi.org/10.1109/icc.2013.6655279
http://dx.doi.org/10.1109/icc.2013.6655279
http://dx.doi.org/10.1109/icc.2013.6655279
http://dx.doi.org/10.1109/icc.2013.6655279
http://dx.doi.org/10.1109/LCOMM.2017.2705643
http://dx.doi.org/10.1109/LCOMM.2017.2705643
http://dx.doi.org/10.1109/LCOMM.2017.2705643
http://dx.doi.org/10.1109/LCOMM.2017.2705643


This remainder of this paper is organized as follows. Section 2 briefly reviews

Turbo codes and the method proposed in [7]. The proposed method with multiple

expansion points is also presented in this section. The simulation results of

proposed method are presented in Section 3. The architecture for implementation

of proposed method is presented and compared with PWL method in section 4.

Finally, conclusive remarks are presented in Section 5.

2 Proposed method for 2-input max� operation

2.1 Existing method with Taylor Series

In Log-MAP algorithm, for radix-2 case, the forward recursion of state metric �kðsÞ
can be computed as

�kðsÞ ¼ max�ð�k�1ðs00Þ þ �kðs00; sÞ; �k�1ðs01Þ þ �kðs01; sÞÞ ð1Þ
where s00 and s01 represent the two possible predecessor states of s. The backward

recursion can be expressed in similar way.

Obviously, the computation of state metric can resort to max� operation with

two variables. Applied with Jacobian logarithm, max� operation yields

max�ðx1; x2Þ ¼ logðex1 þ ex2Þ
¼ maxðx1; x2Þ þ logð1 þ e�jx1�x2jÞ
¼ maxðx1; x2Þ þ fcð�Þ

ð2Þ

where fcð�Þ is thought as a correction term, and δ is equal to jx1 � x2j which
represents the absolute value of difference between x1 and x2.

The Taylor Series can be used to approximate a nonlinear function with a linear

function. It was firstly introduced to Turbo decoding in [7]. The approximation with

Taylor Series at point x ¼ x0 can be expressed as

fcðxÞ � bfcðxÞ ¼ fcðx0Þ þ f0
cðx0Þðx � x0Þ ð3Þ

where bfcðxÞ is the linear approximation and f0
cðx0Þ is the first order derivative value

of fcðxÞ at x ¼ x0.

The method proposed in [7] adapts only one expansion point and expands

around zero. The approximation neglects these orders greater than one and yields

max�ðx1; x2Þ � maxðx1; x2Þ þmax 0; log 2 � 1

2
jx1 � x2j

� �
ð4Þ

For simplicity, the method proposed in [7] is named with ‘MS-Log-MAP’ in the

rest paper.

2.2 Proposed method with multiple expansion points

The approximation with only one point is suitable for the region close to expansion

point. For the region that far away from the expansion point, the mismatch between

the approximation and the exact value will be significant. In order to reduce this

mismatch, we come up with the idea that approximate the correction term with

multiple expansion points which will generate multiple linear approximations.

Since the function of fcðxÞ is concave, so the linear approximation bfcðxÞ is always
not greater than the exact value and the approximation can be expressed as
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bfcðx2 � x1Þ ¼ maxð0; k1 � jx1 � x2j þ C1; . . . ; ki � jx1 � x2j þ CiÞ ð5Þ
where k, l and C represent the corresponding coefficients at different expansion

point. And i is the number of expansion points. Obviously, the approximations are

always not greater than the exact values.

When it comes to the selection of expansion points, an auxiliary parameter δ is

introduced to determine the expansion points. The parameter δ can be expressed as

follows

� ¼ max
x

jfcðxÞ � bfcðxÞj ð6Þ
where δ indicates the maximum error between the exact value fcðxÞ and the linear

approximation bfcðxÞ.
As is known, the expansion point is also the tangent point of fcðxÞ. The steps to

determine the expansion points are summarized as follows:

Step 1: Find the point ðx; bfcðxÞÞ that satisfies bfcðxÞ ¼ fcðxÞ � �. These points are

points of intersection which are between approximation and axis, inter approx-

imations. We start the searching of these points from the point of intersection

between fcðxÞ and axis y. Obviously, the initial point is ð0; logðxÞ � �Þ on axis y.

Step 2: Compute the tangent point ðx0; fcðx0ÞÞ. According to the point ðx; bfcðxÞÞ
from Step 1, we can compute the tangent point of ðx0; fcðx0ÞÞ as follows

fcðxÞ � � ¼ f0
cðx0Þ � ðx � x0Þ þ fcðx0Þ

) logð1 þ e�xÞ � � ¼ logð1 þ e�x0Þ � 1

1 þ ex0
� ðx � x0Þ

ð7Þ

where x is the point of intersection we got in Step 1, and x0 is the tangent point to

be determined. This is a transcendental equation. So the numerical result rather than

analytical result is desired. We scan the x0 from the point of intersection x to 4 with

step size 0.01, and choose the point that bfcðxÞ is closest to fcðxÞ as the tangent point
x0.

Step 3: Compute the linear approximation bfcðxÞ at expansion point x0. With the

tangent point computed in last step, the approximation can be computed as Eq. (3).

Step 4: Repeat Step 1 to Step 3 until the error fcðxÞ � bfcðxÞ is not greater than δ

at the point of intersection between bfcðxÞ and axis x. Otherwise repeat Step 1 to

Step 3.

The parameter δ is set to be 0.025 in our design and the determined expansion

points are 0.45, 1.46 and 2.97, the correction term can be approximated as

fcðx2 � x1Þ � maxð0; 0:6685 � 0:3894 � jx2 � x1j;
0:4840 � 0:1885 � jx2 � x1j;
0:1950 � 0:0488 � jx2 � x1jÞ:

ð8Þ

However, if Eq. (8) is implemented directly, the complexity will increase

greatly with the increased number of expansion points which involves more max

operations, multiplications and additions. If the expansion point is determined, then

only the linear approximation at the selected expansion point is necessary to

compute and the max operation can be removed. The expansion point can be

selected according to jx2 � x1j, so the Eq. (8) can be reformulated as
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fcðx2 � x1Þ �

0:6685 � 0:3894 � jx2 � x1j; for 0 < jx2 � x1j < 0:92

0:4840 � 0:1885 � jx2 � x1j; for 0:92 < jx2 � x1j < 2:07

0:1950 � 0:0488 � jx2 � x1j; for 2:07 < jx2 � x1j < 3:9959

0; for 3:9959 < jx2 � x1j

8>>>><
>>>>:

ð9Þ

where the expansion points are around 0.45, 1.46 and 2.97, respectively. For the

region that jx1 � x2j is above 3.9959, the correction term is taken as zero. The

summary of the approximations and corresponding expansion points are shown

in Table I.

It’s found that the PWL method in [8] can also be interpreted by the proposed

method with multiple expansion points according to Eq. (5). The PWL method

combines the max operation and the correction term as a whole. The PWL method

removes the absolute operation, so it computes the approximations with assumption

x2 > x1 and x1 > x2 separately. For PWL method with r ¼ 3, it can be verified that

the corresponding expansion point is around zero. And the approximation is

identical with the ‘MS-Log-MAP’ proposed in [7] if the max value is combined

with the correction term. For PWL method with r ¼ 4, the corresponding expan-

sion point is around 0.9895. When it comes to r ¼ 5, two expansion points are

adapted, which are around 0 and 1.6.

Fig. 1 plots the curves of different approximations and the curve of ideal

correction term. Among these plotted methods, it’s obvious that the proposed

method has the highest accuracy while the ‘MS-Log-MAP’ has the largest

derivation.

Table I. The expansion points and corresponding approximation term

Range of jx2 � x1j Approximation term Expansion point

0∼0.92 0:6685 � 0:3894 � jx2 � x1j 0.45

0.92∼2.07 0:4840 � 0:1885 � jx2 � x1j 1.46

2.07∼3.9959 0:195 � 0:0488 � jx2 � x1j 2.97

Fig. 1. The curves of different approximations of correction term.
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On the perspective of parameter δ, we can compare the existing methods ‘MS-

Log-MAP’ and ‘PWL-r ¼ 5’. The maximum error of ‘MS-Log-MAP’ is 0.2244.

And the maximum error of ‘PWL-r ¼ 5’ at the points of intersection are 0.0001,

0.0642 and 0.0654, respectively.

3 Numerical results

The simulation is performed for 8-state turbo codes defined in 3GPP LTE standard.

The code rate is set to 1/2, and the block size is 2048. The channel is modeled to be

AWGN and BPSK modulation is considered. For decoder, the number of iterations

is 8. Simulations are carried out with ideal floating point algorithms and the total

number of transmitted blocks is 104.

Fig. 2 shows the bit error performance (BER) versus Eb=N0, where Eb is the bit

energy and N0 is the one-sided power spectral density of AWGN channel. The

curves labeled with ‘Log-MAP’, ‘max-Log-MAP’, ‘LUT-Log-MAP’, ‘constant-

Log-MAP’, represent the BER performance of such a decoder that are mentioned in

Section 1. Eight values of approximation term for ‘LUT-Log-MAP’ are stored in

LUT. The curves labeled with ‘MS-Log-MAP’ and ‘PWL-r ¼ 5’ are BER perform-

ance of the method proposed in [7] and [8], respectively. The ‘proposed-TS-3EPs,

� ¼ 0:025’ represents the method proposed with three expansion points in this

paper.

As shown in Fig. 2, the ‘max-Log-MAP’ has the worst performance among the

existing methods. The ‘MS-Log-MAP’ has inferior performance compared with

‘constant-Log-MAP’. The proposed method has about 0.11 dB performance supe-

rior than ‘MS-Log-MAP’ when BER is 10�5. Besides, with the magnified detailed

curves, it’s shown that the proposed method is slightly superior than the ‘PWL-

Fig. 2. BER performance comparison, N ¼ 2048, 8 iterations, AWGN
channel
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r ¼ 5’ method among all SNR region, which has about 0.04 dB advantage when

BER is 10�4. The proposed method has almost the same performance with ‘LUT-

Log-MAP’ when SNR is low and outperforms ‘LUT-Log-MAP’ when SNR is

high. Compared with ‘Log-MAP’, the proposed method has identical performance.

4 Design architecture and complexity analysis

As mentioned above, as the parameter δ decreases, then the number of expansion

points increases, the computational complexity of Eq. (8) will increase signifi-

cantly. For PWL method, the same problem occurs as the value of r increases. As

comparison, the detailed architecture of PWL method with r ¼ 5 is firstly presented

in Fig. 3. For r ¼ 5, 6 multiplications and 6 additions are needed. Besides, 4 max

operations are required. Much more computations are required for larger r value.

Definitely, it’s too complex for implementation.

Fig. 4 shows the detailed architecture of the proposed method according to

Eq. (9). Considering simplicity and feasibility for extension, the coefficients k, l

and C involved in Eq. (9) are stored in LUT. The max operation will be executed

firstly for the two inputs, and the lager value will be chosen via the sign of the

difference value. Then the difference value is used to addressing the LUT to read

the corresponding coefficients at specified expansion point. The correction term is

computed and added with the largest input finally to get the complete result.

Compared with Fig. 3, it’s obvious that the proposed architecture has much

lower complexity which only one max operation, one multiplication and two

additions are needed. What’s more, compared with the PWL method, the archi-

tecture of proposed method is consistent for different number of expansion points.

So another advantage of proposed method is that the complexity keeps almost

unchanged as the number of expansion points increases. The only difference is the

coefficients stored in LUT. The addressing signals for LUT can be generated by bit

logic according to the value of difference. The cost of the proposed method is that

Fig. 3. Detailed Architecture for PWL-r ¼ 5 method in [8]
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one small LUT is needed. And three groups of coefficients are needed to be stored

in the LUT in which k, l and C can be stored as a entity.

The summary of complexity comparison between existing methods is presented

in Table II for two input max� operation case. Compared with the ‘PWL-r ¼ 5’ and

‘PWL-r ¼ 4’, the computational complexity of proposed method is greatly reduced

but with slightly superior BER performance. Besides, the proposed method has

comparable complexity with original ‘MS-Log-MAP’, which has one more multi-

plication while has one less addition and none shift operation.

5 Conclusion

The improved method based on Taylor Series with multiple expansion points is

presented in this paper. The proposed method aims to provide an improved

approximation of max� operation along with excellent BER performance. Aided

with parameter δ, the suitable expansion points can be determined and the

corresponding approximations can be derived based on Taylor series expansion.

When δ is set to be 0.025, three expansion points can be determined. With

application of three expansion points, the simulation results shows that the

proposed method achieves excellent BER performance which is almost identical

with Log-MAP algorithm. Compared with existing methods, especially the PWL

method, the proposed method has greatly reduced computational complexity and

slightly superior BER performance. Besides, the computational complexity keeps

almost consistent for different number of expansion points. For ASIC or FPGA

implementation, the proposed method will cost reduced resources for max�

operation.

Fig. 4. Architecture of proposed method for Eq. (9)

Table II. Comparison of computational complexity for different
approximations of max� operation

Algorithms Max. Add. Mult. Shift Abs. LUT

MS-Log-MAP 1 3 0 1 1 0

PWL-r ¼ 4 3 4 4 0 0 0

PWL-r ¼ 5 4 6 6 0 0 0

Proposed 1 2 1 0 1 1
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