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Abstract: In this letter, we present a novel memristor-based restricted

Boltzmann machine (RBM) system for training the brain-scale neural net-

work applications. The proposed system delicately integrates the storage

component of neuron outputs and the component of multiply-accumulate

(MAC) in memory, allowed operating both of them in the same stage cycle

and less memory access for the contrastive divergence (CD) training.

Experimental results show that the proposed system delivers significantly

2770x speedup and less than 1% accuracy loss against the x86-CPU platform

on RBM applications. On average, it achieves 2.3x faster performance and

2.1x better energy efficiency over recent state-of-the-art RBM training

systems.
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1 Introduction

Deep neural networks (DNNs), achieved many significant breakthroughs in deep

learning, are widely used in recognition, mining, and synthesis. Restricted

Boltzmann machines (RBMs) [1], pre-trained the neural networks (NNs) in an

effective and feasible layer-by-layer manner, are massively applied to tune the NN

parameters into an optimized region. One of the most famous training approaches

for RBMs is the stochastic approximation gradient called contrastive divergence

(CD) [2]. With the advent of superior DNNs, where the parameter features even up

to brain-scale and the continues enormous memory access overhead for big-data

workloads, the design of efficient RBM accelerating systems, which enable

processing huge amount of computation in memory for the brain scale of training

and inference, has drawn great attention [3].

Recently, memristor-based RBM accelerators [2, 4, 5, 6, 7], guaranteed the

non-volatile storage of NN parameters and enabled operating the multiply and

accumulator (MAC) computation in memory, are potential to beyond the scale

limitation of conventional CMOS technology for brain-scale NN applications.

However, the introduced huge CMOS latches in [4] for the storage of neuron

outputs will result in intolerable area overhead when scaling up the system for brain

level accelerations. [5, 6] allow only the inference of DNN applications and are

bounded by the disability of training. Meanwhile, [2, 7] accomplish CD procedure

with long stage cycles due to the conditional provision in CD, which incurs a huge

amount of memory access overhead. Moreover, [2] implements a CD-like accel-

erating system by altering the original CD to simplify its hardware implementation.

This, in return, dramatically limits their ability in RBMs applications. In brief, all

the works above cannot efficiently train and inference the brain-scale RBMs.

In this brief, we build an efficient memristor-based RBM system for training

and inference the brain-scale NNs. The system ingeniously assembles the storage

component of neuron outputs and the component of MAC computations through a

memristor-based latch (m-latch), allowed processing them in the same stage cycle

and avoided frequently reloading NN parameters.
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2 Preliminaries

The RBM model consisted of two layer NNs with each “hidden” (h) neuron

connected to all “visible” (v) neurons, is defined via an energy function as

Eðv; hÞ ¼ �
X
i

civi �
X
j

djhj �
X
i;j

vihjwij ð1Þ

where ci and dj are bias weights. wij is a synapse connected between vi and hj

neurons. Notably, the conditional probabilities of vi and hj are given by

Pðhj ¼ 1jv; �Þ ¼ � dj þ
X
i

viwij

 !
; Pðvi ¼ 1jh; �Þ ¼ � ci þ

X
j

hjwij

 !
ð2Þ

where �ð�Þ is an activation function such as sigmoid, and � ¼ fci; dj; wijg.
CD algorithm provides a feasible way to train the RBM model by estimating

the gradient of wij, ci, and dj in Eq. (1) as follows

�wij ¼ "ðhvihjiin � hvihjirecÞ;
�ci ¼ "ðhviiin � hviirecÞ; �dj ¼ "ðhhjiin � hhjirecÞ

(
ð3Þ

where ε denotes a learning rate. h�iin and h�irec are the expectations of the input

neurons and reconstruction neurons respectively.

Nevertheless, CD has to generate hviiin and hhjiin of input neurons, and hviirec
and hhjirec of reconstruction neurons in sequence. This derives from the conditional

provision of vi and hj on Eq. (2). That is, a long computation path and huge

memory access are taken in the CD procedure. When we could process the

dependent and sequential computation in memory simultaneously and avoid

frequently memory access, training and inference the brain-scale RBMs will be

completed in a more practical and efficient way.

Fig. 1 illustrates the perspective view of a memristor-based latch (named as

m-latch) [8]. m-latch, consisted of two memristors M1 and M2 with either the low

or high resistance state (LRS or HRS), functions as a latch for storing the neuron

output. Specifically, the potential at the “out” wire of m-latch denotes not only the

logic states (“1” or “0”) of the read operation, and also the results of the write

operation (“0” potential at “out” wire corresponds to M1:HRS and M2:LRS, and

“1” relates to M1:LRS and M2:HRS). In the proposed system, m-latch not only

stores the neuron outputs, the potential at “out” wire of the m-latch also be reused

to trigger both the storage of neurons and MAC computation components.

(a) (b) (c)

Fig. 1. M-latch and its operations. (a) Schematic. (b) Symbol. (c) Read
and write operations.
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3 Memristor-based RBM pre-training system

Fig. 2 depicts the architecture of the proposed memristor-based RBM system. It

consists of two neuron components (visible and hidden), two signal storage cell

components (v-out and h-out), a bias component, and the twos weight synapse

(Wþ and W�, referring to positive and negative weights respectively) and trans-

position weight synapse (WT
þ and WT

�) components. The transposition synapse is a

copy of the weight synapse. Both of them perform the MAC computation with the

visible and hidden neurons as inputs respectively. The signal storage cell consisted

of the bottom and up m-latches, stores outputs of neurons and reconstructed

neurons respectively.

Fig. 3 illustrates how the proposed system at Fig. 2 generate the sequenced hvi
and hhi of Eq. (3) in the same stage cycle. The potential at “out 1” of m-latch plays

a key role to integrate both the storage of neuron outputs and the followed MAC

computing. First, visible neuron component outputs the hviin results to the bottom

m-latches of the v-out component. Simultaneously, the followed MAC computa-

tions on Wþ and W� can be triggered when storing neuron outputs at v-out. This is

because that the potential of “out 1” always equals to them of “a”. That is, the

cascaded hidden neuron component can directly output the results hhiin to the

bottom m-latches of the h-out component. Therefore, hviin and hhiin can directly be

generated in the same cycle and avoid reloading hviin during computation.

Similarly, hvirec and hhirec in Eq. (3) are respectively generated and stored back

to the up m-latches of both v-out and h-out at the same cycle.

Based on the above procedure, the proposed system is able to compute the CD

procedure with fewer step cycles and avoid part of the read neuron operations. The

CD procedure of the proposed RBM architecture is summarized in Algorithm 1.

The computation of hvi and hhi are completed in the same stage cycle, shown in

both stage 2 and 3. That is, the proposed RBM system can perform the CD

procedure in a more efficient way.

Fig. 2. Profile of the memristor-based RBM system.
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Algorithm 1 Schedule of the memristor-based CD.

1: stage 1: Initialization.

2: stage 2: Parallel computing hviin and hhiin.
3: stage 3: Parallel computing hvirec and hvirec.
4: stage 4: Parameters updating.

5: W ¼ W þ "ðhviTinhhiin � hviTrechhirecÞ; c ¼ c þ "ðhviin � hvirecÞ;
6: WT ¼ WT þ "ðhhiTinhviin � hhiTrechvirecÞ; d ¼ d þ "ðhhiin � hhirecÞ;

4 Experiments and results

4.1 Experiments setup

Baselines for comparison. CPU: the x86-CPU baseline is the Intel Xeon E5-2620

v3 with 15M cache and 2.40GHz. Prior RBM training systems: The compared

state-of-the-art memristor-based RBM systems include the hybrid RRAM-CMOS

RBM (Hyb) [7], the two memristors mode (Two-m) [2], and the memory-centric

accelerator (Mem-cen) [4].

Performance: The execution time of the CPU platform for the standard CD

procedure [1] is measured with an NN of the 784-1000 size. Meanwhile, the

performance of the proposed system is estimated based on the tuning time of the

physical memristor device [9] under the same NN size. Energy and area: Since

the storage of the neuron output and synapse dominating in the memristor-based

system, we focus on the energy and area of them for all RBM systems, which are

evaluated under a 784-500 NN size, 8-bit scale data. Specifically, the memristor

components are measured with the circuit-level simulator Nvsim [10] based on a

TiO2 memristor model [11] in 45-nm technology, while the CMOS components are

synthesized by the Design Compiler in 45-nm technology. Detailed parameters of

the memristors in the proposed RBM system are shown in Table I.

Accuracy: In the proposed system, we use different applications for the

accuracy comparisons with the standard CD procedure platform [1]. The auto-

encoder and classification applications are conducted for training, cross-validation

(cro.-val.), and testing under two well-known workloads, including the MNIST

dataset (60,000 training and 10,000 testing images) and the ImageNet dataset

(randomly selected 1,600 training and 400 testing images). Details of the training

characteristics are shown in Table II.

Fig. 3. Illustration of computing hviin and hhiin in the same cycle. The
equivalent potential of “out 1” from the bottom m-latch and “a”
allows storing the hviin and hhiin within one cycle.
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4.2 Experimental results

Performance and Energy Efficiency. a) Performance The proposed system

delivers a 2770x speedup against the CPU platform (x86-CPU needs 4.355 s, the

proposed system takes 1:572 � 10�3 s). Compared to prior memristor-based RBM

systems, we achieve a speedup of 2.3x on average, delivering 2x, 3.3x, and 1.7x

higher performance than Hyb, Two-m, and Mem-cen respectively, shown in

Table III. b) Energy Efficiency Table III also shows the energy efficiency of the

recent state-of-the-art RBM systems. The proposed system delivers on average 2.1x

energy efficiency with 2.7x, 1.1x, and 2.4x better than Hyb, Two-m, and Mem-cen

respectively. The benefits of performance and energy efficiency of the proposed

system derive from the reduced cycles and memory accesses on the CD procedure.

Accuracy. Table IV shows the accuracy results of the auto-encoder and

classification applications compared to the standard CD. The auto-encoder is

evaluated in term of the average squared reconstruction error (SRE), which is also

used in [1]. The classification is measured in accuracy, which is a correct fraction of

all the predictions.

Compared to the standard CD, on average, the proposed system achieves a

similar SRE in auto-encoder applications, showing the offsets of 3.57 and 52.59 in

MNIST and ImageNet dataset respectively. These differences are very small. Only

0.4% and 0.3% pixels are different for the input images in MNIST and ImageNet,

respectively. Compared to the standard CD in classification applications, the

proposed system has less than 1% accuracy loss.

Area Overhead. Table V shows the area comparisons among the recent

memristor-based RBM systems. Compared to the Mem-cen and Hyb systems,

the proposed design takes 46.5% and 22.5% lower area consumption respectively.

This is because that the Mem-cen system uses the CMOS latches for neuron

outputs, while the Hyb system uses four times more memristors for synapses than

the proposed system. Compared to the Two-m system, the proposed design

consumes double the memristors for the storage of weights and neurons. Eventually

Table II. Training parameters on auto-encoder and classification
applications

auto-encoder classification

Dataset MNIST ImageNet MNIST

K-fold 10 5 10

NN size
784-1000-500

-250-30
16384-700-1000
-500-1000-500

784-1000-500
-250-10

Training epoch 10CD 50CD 10CD + 50BP

CDs’ learning rate 0.1 0.001 0.1

Table I. Memristor parameters for the latch and synapse

Params Vp Vn Ap An xp xn �p �n a1 a2 b

Latch 0.42 0.22 5E2 3E3 0.7 0.8 4 24 2.3E-3 3.8E-3 1

Synapse 1.1 1.1 3E3 3E3 0.7 0.8 4 24 2.3E-3 2.3E-3 0.7
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it takes more than 39.5% area consumption. However, the area consumption is very

small and only takes 0.41% of the recent famous ASIC-based NN accelerator [12]

(40.8mm2) on the same technology.

5 Conclusion

We propose a novel RBM training system to boost up the CD procedure for big-

data applications. The system enables storing the neuron outputs and performing

the MAC operations in the CD procedure within the same cycle and less memory

access. Experiments show that we achieve a speedup of 2770x against CPU, and

deliver 1.7x∼3.3x faster performance, 1.1x∼2.7x better energy efficiency than

recent state-of-the-art RBM training systems.
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Table III. Performance and energy of recent RBM training systems

Platforms Hyb Two-m Mem-cen Prop.

Cycles of each CD 6 10 5 3

Performance speedup 2x 3.3x 1.7x -

Energy (pJ) 932.418 379.525 823.021 341.689

Energy efficiency 2.7x 1.1x 2.4x -

Table IV. Accuracy results on the auto-encoder and classification

Standard CD [1] Prop.

Application Dataset train cro.- test train cro.- test
val. val.

auto-enc. MNIST 12.80 13.02 12.59 16.46 16.57 16.16

(SRE) Imagenet 674.81 708.19 684.66 622.56 663.97 632.07

classif.
MNIST 99.99% 98.73% 98.60% 99.96% 98.38% 97.90%

(accuracy)

Table V. Areas of the signal storage cells and synapses

Platforms Hyb Two-m Mem-cen Prop.

Area (mm2) 0.2138 0.1003 0.3100 0.1657
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