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Abstract: The parallel sampling structure of hybrid filter bank (HFB) has

been considered as a promising candidate for realizing analog-to-digital

conversion with high speed and high resolution simultaneously. However,

the HFB design faces a challenge of accurately approximating the ideal

synthesis filter frequency responses, which are discontinuous when the

widely-adopted analysis filters are used. In this work, we analyze the origin

of the ideal synthesis filter discontinuities. To address the discontinuity

problem, we propose a novel oversampling scheme, i.e., artificially modify-

ing the analysis filter frequency responses in the oversampling band. Per-

formance evaluation reveals that the proposed oversampling scheme can

significantly improve the HFB’s reconstruction accuracy, while avoiding the

existing methods’ demerits such as the ill-conditioned coefficient matrix and

the large reconstruction error in the oversampling band.
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1 Introduction

Newly emerging communication technologies, such as the cognitive and software

radios, exhibit a desire for high-speed, high-resolution analog-to-digital converters

(ADCs) to implement wideband sampling. However, with current ADC fabrication

techniques, it is difficult to manufacture an individual ADC that possesses high

speed and high resolution simultaneously [1]. To overcome this bottleneck, a

parallel sampling structure called hybrid filter bank (HFB) has been proposed

[2], which has the potential to obtain a high overall sample rate from several low-

speed ADCs while maintaining their high resolutions.

The proper operation of an HFB relies on the good matching between an analog

analysis filter bank (AFB) and a digital synthesis filter bank (SFB), which are

respectively responsible for segmenting and reconstructing the input wideband

spectrum. For the design of HFB, almost all of the papers available recommend to

firstly construct an AFB with easily-realizable (e.g., first- or second-order Butter-

worth) analog filters, then design a SFB to match the already constructed AFB

[3, 4, 5, 6, 7, 8]. The SFB design process can be roughly divided into two steps: (1)

Calculate the ideal synthesis filter frequency responses according to the perfect

reconstruction (PR) equation; (2) Approximate the ideal synthesis filter frequency

responses by finite impulse response (FIR) filters.

A problem occurs in the above HFB design process is that the ideal synthesis

filter frequency responses are discontinuous at some frequencies [3]. These dis-

continuities make the ideal synthesis filters difficult to approximate by short FIR

filters. In order to address the discontinuity problem, [3] proposes an oversampling

scheme in which the oversampling band is assigned with a relatively small weight.
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However, as pointed out in [4], this scheme results in an ill-conditioned coefficient

matrix for the PR equation. Furthermore, large reconstruction errors will appear in

the oversampling band, which has to be removed via a post-filtering procedure. A

second-order cone programming method based on a similar oversampling scheme

is used in [5, 9, 10, 11], but it also leads to large reconstruction errors in the

oversampling band.

In this work, we analyze the origin of the ideal synthesis filter discontinuities.

Basing on this, we propose a novel, simple but effective oversampling scheme,

i.e., modifying the analysis filter frequency responses in the oversampling band.

Performance evaluation reveals that this scheme can overcome the discontinuity

problem while not increasing reconstruction errors in the oversampling band.

Calculation of coefficient matrices’ condition numbers demonstrates that all the

coefficient matrices associated with our HFB design process are kept well-

conditioned.

2 HFB model and discontinuity problem

The structure of an M-channel maximally decimated HFB is illustrated in Fig. 1.

The input analog signal xðtÞ (with a spectrum located within ½��=T; �=T �) is first
segmented into M subbands by a bank of analog analysis filters HmðsÞ (m ¼
1; . . . ; M ), then sampled by an ADC array at the rate of 1=MT , where T is the

sample period of the system. The digitized subband signals are then upsampled by a

factor M, filtered by a bank of digital synthesis filters FmðzÞ (m ¼ 1; . . . ; M ), and

finally summed together to reconstruct the input spectrum. The spectral represen-

tations of the input xðtÞ and the output x̂½n� are denoted as Xðj�Þ and bXðej!Þ,
respectively.

To focus on the reconstruction errors caused by the mismatch between the AFB

and the SFB, it is often assumed that the quantization noises originated from the

parallel ADCs can be ignored [3, 4]. In this case, the HFB’s output bXðej!Þ can be

written as

bXðej!Þ ¼ 1

T
eXðj�ÞT0ðej!Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
distortion term

þ
XM�1

p¼1

1

T
eX j� � j

2�p

MT

� �
Tpðej!Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aliasing term

����
�¼!=T

; ð1Þ

where T0ðej!Þ (called the distortion function) and Tpðej!Þ (p ¼ 1; . . . ; M � 1)

(called the aliasing functions) are respectively defined as

Fig. 1. Structure of an M-channel maximally decimated HFB.
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T0ðej!Þ ¼ 1

M

XM

m¼1
eHmðj�ÞFmðej!Þ;

Tpðej!Þ ¼ 1

M

XM

m¼1
eHm j� � j

2�p

MT

� �
Fmðej!Þ:

8>><>>: ð2Þ

eXðj�Þ and eHmðj�Þ are respectively the periodic extensions (with the period 2�=T)

of Xðj�Þ and Hmðj�Þ limited to ½��=T; �=T � [4]. The desired output of the HFB is

the distortionless sampled version of the input signal, i.e., Xðj�Þj�¼!=T . Since the

input xðtÞ is assumed to be bandlimited in ½��=T; �=T �, here eXðj�Þ is simply

Xðj�Þ. Therefore, according to Eq. (1), the PR condition for an HFB can be

expressed as the following equation (called the PR equation)

T0ðej!Þ ¼ ce�j!d;

Tpðej!Þ ¼ 0 ðp ¼ 1; . . . ; M � 1Þ;

(
8! 2 ½��; �� ð3Þ

where c is a scale factor and d is the system delay. In practice, PR is generally not

realizable. What a designer pursues is to approximate PR within a given tolerance,

by properly designing the AFB and SFB.

To build an HFB, analog filters with the following low-order transfer functions

are widely adopted as the AFB

H1ðsÞ ¼ �1

s þ�1

;

HmðsÞ ¼ Bs

s2 þ Bs þ�2
m

ðm ¼ 2; . . . ; M Þ;

8>><>>: ð4Þ

where �m (m ¼ 1; . . . ; M) denote the cutoff or resonation frequencies, B is the 3-dB

passband width. For example, for a four-channel (i.e., M ¼ 4) HFB, the frequency

responses of its analysis filters are plotted in Fig. 2 (the solid lines).

Given the analysis filters of Eq. (4), the ideal synthesis filter frequency

responses, i.e., the ones that perfectly match the analysis filters and can be obtained

by solving the PR Eq. (3),1 are always discontinuous at integral multiples of 2�=M

[3]. For example, the ideal synthesis filter frequency responses that match the

analysis filters in Fig. 2 (the solid lines) are plotted in Fig. 3(a), showing disconti-

nuities at ��=2.

3 Origin of ideal synthesis filter discontinuities

We point out that the discontinuities of the ideal synthesis filter frequency responses

originate from the analysis filters’ non-zero phases at the border frequencies ��=T .
This can be illustrated by the example as follows.

Suppose �! is a very small positive frequency interval. To simplify the

notations, we use !� and !þ to represent ! � �! and ! þ �! respectively, i.e.,

the left and right two frequencies close to ω, where ω is an arbitrary frequency. For

a four-channel HFB, the PR equations at the frequencies ð�=2Þ� and ð�=2Þþ can be

rewritten in the following matrix forms

1To speak more specifically, the PR Eq. (3) is often solved numerically at K (a sufficiently large number, e.g.,
K ¼ 512) discrete frequency points equally spaced in ½��; �� [3, 4]. Thus, what we really obtain are the K-point
samples of the ideal synthesis filter frequency responses. The parameters in Eq. (3) are set as c ¼ 1 and d ¼ 0.
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H1F1 ¼ 4t1; ð5Þ
H2F2 ¼ 4t2; ð6Þ

where F1 ¼ ½F1ðejð�2Þ�Þ; F2ðejð�2Þ�Þ; . . . ; F4ðejð�2Þ�Þ�T , F2 ¼ ½F1ðejð�2ÞþÞ; F2ðejð�2ÞþÞ; . . . ;
F4ðejð�2ÞþÞ�T , t1 ¼ ½ce�jð�2Þ�d; 0; 0; 0�T , t2 ¼ ½ce�jð�2Þþd; 0; 0; 0�T , and

(a) (b) 

Fig. 3. Ideal synthesis filter frequency responses that match (a) the
original analysis filter frequency responses and (b) the modified
analysis filter frequency responses.

Fig. 2. Frequency responses of the analysis filters in a four-channel
HFB. The solid lines are the original frequency responses. The
dashed lines in the oversampling band (in the below panel) are
the modified phase-frequency responses.
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H1 ¼

H1 j

�
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� ��
T

 !
H2 j

�

2

� ��
T

 !
. . . H4 j

�

2

� ��
T

 !
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0�

T

� �
H2 j

0�

T

� �
. . . H4 j

0�

T

� �

H1 j
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� ��
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 !
H2 j
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� ��
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 !
. . . H4 j

��
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� ��
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� �
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��
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� �
. . . H4 j

��

T

� �
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;

H2 ¼

H1 j

�

2

� �þ
T

0@ 1A
H2 j

�

2

� �þ
T

0@ 1A
. . . H4 j

�

2

� �þ
T

0@ 1A
H1 j

0þ

T

� �
H2 j

0þ

T

� �
. . . H4 j

0þ

T

� �

H1 j
��

2

� �þ
T

0@ 1A
H2 j

��

2

� �þ
T

0@ 1A
. . . H4 j

��

2

� �þ
T

0@ 1A
H1 j

ð��Þþ
T

� �
H2 j

ð��Þþ
T

� �
. . . H4 j

ð��Þþ
T

� �

2666666666666666664

3777777777777777775

:

It can be seen that when �! ! 0, the first three rows of H1 are equal to those of

H2. The last row of H1 is always unequal to that of H2, unless the phases of

Hmðj�Þ (m ¼ 1; . . . ; 4) at ��=T are zeros. On the other hand, t1 tends to be equal to

t2 as �! ! 0. Therefore, the solutions to Eq. (5) and Eq. (6), i.e., F1 and F2, are

always discontinuous, unless the analysis filters have zero phases at ��=T .

4 Description of the proposed oversampling scheme

It is manifested in Section 3 that if the analysis filters satisfy the constraint that their

phases tend to zeros when � ! ��=T , then the ideal synthesis filter frequency

responses will be continuous throughout the entire frequency band, i.e., ½0; �� (also
½��; 0�). This inspires us with the oversampling scheme described below, which

can overcome the discontinuity problem.

We assume that the HFB operates in a slightly oversampling mode, specifically,

the input signal xðtÞ is supposed to be bandlimited to ½�ð1 � �Þ�=T; ð1 � �Þ�=T �,
where α (0 < � < 1) is seen as the oversampling ratio. Since there is no input signal

in the oversampling band, i.e., ½��=T;�ð1 � �Þ�=T � [ ½ð1 � �Þ�=T; �=T �, the

analysis filter frequency responses in this band have no effect on the HFB’s output,

thus they can be artificially modified to any form. Considering the origin of the

discontinuity problem, we choose to modify the analysis filters’ phases in the

oversampling band such that they tend to zeros when � ! ��=T .
To make smooth transitions at the connecting frequencies �ð1 � �Þ�=T , we

utilize quadratic curves as the modified phase-frequency responses in the over-

sampling band. For example, for the modified phase-frequency response for H1ðj�Þ
in ½ð1 � �Þ�=T; �=T �, the quadratic function Q1ð�Þ ¼ a1�

2 þ b1� þ c1 is used.

The coefficients a1, b1, c1 are determined by solving the following equations
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�

T

� �2
a1 þ �

T
b1 þ c1 ¼ 0;

ð1 � �Þ�
T

� �2
a1 þ ð1 � �Þ�

T
b1 þ c1 ¼ ffH1 jð1 � �Þ�

T

� �
;

2ð1 � �Þ�
T
a1 þ b1 ¼ ffH0

1ðj�Þj�¼ð1��Þ�T ;

8>>>>>><>>>>>>:
ð7Þ

where ffH0
1ðj�Þ is the first derivative of ffH1ðj�Þ with respect to the pulsation Ω. In

Eq. (7), the first and second equations refer to the phases at �=T and ð1 � �Þ�=T ,
respectively, and the third equation refers to the curve’s slope at ð1 � �Þ�=T .

Conducting the above operation, the modified phases for the aforementioned

analysis filters (shown in Fig. 2 with solid lines) are obtained and depicted in Fig. 2

with dashed lines (see the oversampling band in the below panel), when the

oversampling ratio α is set to 10%. With the modified analysis filter frequency

responses, the ideal synthesis filter frequency responses are recalculated and plotted

in Fig. 3(b), which are continuous and smooth as expected.2

5 Performance evaluation

The ideal synthesis filter frequency responses shown in Fig. 3(b) are then approxi-

mated by four FIR filters of length L ¼ 128,3 thus the HFB design task is

accomplished. Fig. 4 shows the reconstruction performance of this HFB. The

distortion function has an almost unit magnitude (with a ripple of less than

0.01 dB) and a linear phase. The aliasing functions are below −79 dB throughout

the entire band of ½��; ��, implying that the HFB has a spurious-free dynamic

range (SFDR) of 79 dB. This HFB achieves a reconstruction performance com-

Fig. 4. Reconstruction performance of the four-channel HFB designed
with the proposed oversampling scheme. An FIR filter of length
L ¼ 128 is utilized for each synthesis filter.

2Although a π-phase jump occurs for the ideal F1ðej!Þ at frequencies ��=2, it does not add the difficulty of
approximating the ideal F1ðej!Þ, because the magnitude of ideal F1ðej!Þ is zero at these frequencies.
3For each FIR filter, its L coefficients are obtained by truncating the K-point inverse fast Fourier transform

(IFFT) of the ideal synthesis filter frequency response to the largest L consecutive values [2]. Note that since we
set d to 0, the obtained FIR filters are noncausal. They should be further delayed by a time interval of L=2 to obtain
the causal ones.
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parable to those in [3, 5], without the need of post-filtering procedure for filtering

out the oversampling band, which is however a necessity in [3, 5].

Table I presents the achievable SFDRs of the HFBs with different FIR lengths,

in both cases of with and without modification to the analysis filters.4 This table

reveals the significant performance gain of the proposed oversampling scheme.

In the SFB design process, the PR Eq. (3) is often solved in its matrix-vectorial

format (like Eq. (5) or Eq. (6)) at each discrete frequency point. To guarantee the

robustness of the matrix equations’ solutions, the coefficient matrices should be

well-conditioned [12]. We check the condition numbers of the coefficient matrices

associated with the modified analysis filters. All the condition numbers are less than

2.5, demonstrating that the coefficient matrices are well-conditioned.

6 Conclusion

In this work, we have proposed a novel oversampling scheme for HFB design. This

scheme involves artificially modifying the analysis filter frequency responses in the

oversampling band, the operation of which can eliminate the discontinuities of ideal

synthesis filter frequency responses. Performance evaluation has shown that the

proposed scheme can achieve a good reconstruction performance for HFB, without

bringing about the demerits with existing oversampling schemes.
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Table I. Achievable SFDRs of the HFBs with different FIR lengths

FIR length L 32 64 128 256 512

SFDR (dB), with modification 41 62 79 98 113

SFDR (dB), without modification 25 32 38 44 50

4For a fair comparison, an oversampling ratio of 10% is also assumed in the case of not modifying the analysis
filters.
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