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Abstract: This letter presents the Cramer–Rao Lower Bound (CRLB) for

circularly configured planar arrays. CRLB sets a lower bound on the variance

of unbiased estimators. It has been extensively studied in the field of array

signal processing especially for direction-of-arrival (DOA) estimation using

uniform or non-uniform linear arrays. We consider an underdetermined

signal model for circularly configured planar arrays and investigate the

conditions under which CRLB exist. A new closed-form expression for

the CRLB is derived. We numerically compare the CRLB of uniform circular

array (UCA) and nested sparse circular array (NSCA) to confirm whether the

proposed formulation is effective for both uniform and non-uniform circular

planar arrays.
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1 Introduction

Target localization with less sensors than sources, i.e., underdetermined direction of

arrival (DOA) estimation, has been receiving considerable interest in recent years

[1, 2, 3, 4, 5]. The Cramer–Rao Lower bound (CRLB) provides a fundamental

lower bound on the estimation error of any unbiased DOA estimator [1, 6]. The

CRLB can therefore be used as a tool to assess the performance of DOA estimation

algorithms. In literature, there has been a lot of research work on CRLB for DOA

estimation problems. Although this is the case, most of the existing derivations

assume an overdetermined signal model, where the number of sources (D) is

smaller than the number of sensors (M) [1, 2, 3, 7].

Recently, there has been an upsurge of attention for the derivation of CRLB for

underdetermined DOA estimation [6, 7, 8, 9, 10, 11]. These derivations consider

non-uniform or sparse linear array geometries such as nested arrays, co-prime

arrays, and minimum redundancy arrays (MRAs). In terms of underdetermined

DOA estimation, many estimation methods use the Khatri–Rao subspace method.

In array geometry consideration, there exists some 2-D non-uniform planar array

configurations such as nested sparse circular arrays (NSCA) [12] which are capable

of overdetermined and underdetermined DOA estimation. Thus, there is an existing

gap for the derivation of the CRLB for planar arrays especially circularly con-

figured arrays such as uniform circular array (UCA) and nested sparse circular array

which are two examples of circularly configured arrays. NSCA is a circularly

configured array in which two sub-circular arrays are nested together. One part of

the array is dense and the other is sparse [12].

In this letter, we consider the case of stochastic CRLB for circularly configured

planar arrays starting from the Fisher information matrix (FIM) [1]. We derive a

new closed-form expression for the CRLB. The new CRLB expressions are valid if

and only if the FIM is non-singular. In this letter, we observe that for an under-

determined DOA estimation case, as the SNR tends to infinity, the CRLB stagnates

to a constant value which is not the case for overdetermined DOA estimation case.© IEICE 2018
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2 Preliminaries

We consider an M element circularly configured uniform and non-uniform planar

array as shown in Fig. 1, where r is the array’s radius, d1 and d2 are the element’s

separation distance in the dense and sparse parts respectively. The detailed con-

sideration of Fig. 1(b) can be found in [12]. We assume that D narrowband sources

with the wavenumber k ¼ 2�=� are impinging on this array from the directions

� ¼ ½�1; �2; . . . ; �D�. The received signal xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; � � � ; xMðtÞ� is therefore
given by

xðtÞ ¼ AsðtÞ þ nðtÞ ð1Þ
where sðtÞ ¼ ½s1ðtÞ; s2ðtÞ; � � � ; sDðtÞ� is a signal vector which is assumed to be

uncorrelated, and nðtÞ ¼ ½n1ðtÞ; n2ðtÞ; � � � ; nMðtÞ� is noise vector. The array manifold

matrix is therefore given by;

A ¼ ½að�1Þ; að�2Þ; . . . ; að�DÞ� ð2Þ
að�Þ is the steering vector given by að�Þ ¼ ½e�jkrcosð���mÞ�T where �m is the angular

position of the m-th element. The source autocorrelation matrix of sðtÞ is diagonal.
Thus,

Rxx ¼ E½xxH� ¼ ARssA
H þ �I ð3Þ

where Rss is the signal covariance matrix given by the diagonal of signal powers

i.e Rss ¼ diagð�1; �2; . . . ; �DÞ, �d is the power of the d-th source, σ is noise

variance and I is an identity matrix. From (3), we vectorize the covariance matrix

such that

y ¼ vecðRxxÞ ¼ vecðARssA
HÞ þ vecð�IÞ

¼ ðA� � AÞR̂ss þ vecð�IÞ ð4Þ
where R̂ss ¼ ½�1; �2; . . . ; �D�T is the equivalent source signal vector and ðA� � AÞ
is the manifold of longer array after vectorization.

3 Cramer–Rao lower bound

The expressions for CRLB comes from the inversion of the Fisher information

matrix (FIM), which contains information about all the unknown parameters

[6, 8, 11]. In this letter, we are interested in the stochastic CRLB of circularly

configured planar array for underdetermined DOA estimation in which D � M. Let

� ¼ ½�T ; �Td ; ��T denote unknown parameter vector where d ¼ 1; 2; . . . ; D. The

ð�; ‘Þ-th entry of the Fisher information matrix (FIM) =ð�Þ is defined as

=ð�Þ ¼ N � Tr R�1
xx

@Rxx

@½���
R�1

xx

@Rxx

@½��‘

� �
ð5Þ

Trfg is the trace which can be defined as;

TrfWXYZg ¼ vecðXHÞHðWT 	 YÞvecðZÞ
ðW	 XÞ�1 ¼ ðWÞ�1 	 ðXÞ�1

for non-singular W and X. Therefore (5) can be written as
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=ð�Þ ¼ N vec
@Rxx

@½���

� �� �H
ðR�T

xx 	 R�1
xx Þvec

@Rxx

@½��‘

� �

¼ N ðRT
xx 	 RxxÞ�1

2
@y

@½���

� �� �H
ðRT

xx 	 RxxÞ�1
2

@y

@½��‘

� �
ð6Þ

The derivatives of y with respect to � is given by

@y

@½�� ¼
@y

@�1

;
@y

@�2

; � � � ; @y

@�D
;
@y

@�1
;
@y

@�2
; � � � ; @y

@�D
;
@y

@�2

� �
ð7Þ

Let � and � denote:

� ¼ ðRT
xx 	 RxxÞ�1

2
@y

@�1

;
@y

@�2

; � � � ; @y

@�D

� �

� ¼ ðRT
xx 	 RxxÞ�1

2
@y

@�1
;
@y

@�2
; � � � ; @y

@�D
;
@y

@�2

� �

The FIM therefore becomes;

=ð�Þ ¼ N
�H

�H

" #
� �

� 	 ¼ N
�H� �H�

��H �H�

" #
ð8Þ

If the FIM is non-singular, then the CRLB for the DOAs � ¼ ½�1; �2; . . . ; �D�T
can be expressed as the inverse of the Schur complement of the block �H� of

=ð�Þ. Therefore the CRLB will be given by

CRLBð�Þ ¼ =ð�Þ�1 ¼ 1

N
ð�H�?

��Þ�1 ð9Þ
where �?

� ¼ I � �ð�H�Þ�1�H . The non-singularity of the FIM is equivalent to

non-singularity of �H� and �H�?
��.

4 Numerical examples

In order to validate our claims, we now conduct simulations and perform a CRLB

performance comparison for uniform circular array and nested sparse circular array

[12] as shown in Fig. 1. We consider a six element NSCA (three dense and three

sparse elements [12]), and a six, nine and twelve element UCA all with r ¼ �. The

(a) (b)

Fig. 1. Array configuration (a) uniform circular array and (b) nested
sparse circular antenna array
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eight uncorrelated sources are located at � ¼ ½15
; 36
; 70
; 90
; 112
; 130
;
145
; 162
�, all with the same amount of power. In this letter, the CRLB is

evaluated by estimating all the DOAs and find the average CRLB for all estimated

angles. The signal-to-noise ratio (SNR) used in this analysis is defined as;

SNR ¼ 10 log10
mind �d

�2
ð10Þ

where d ¼ 1; 2; . . . ; D.

In Fig. 2, we compare the CRLB of a six element NSCA to the CRLB of UCA

with twelve elements. We then reduce the number of elements of the UCA to nine

and then six. In terms of a six element UCA, the number of elements is the same

to that of NSCA but the element interval is different. In the case of NSCA, the

elements in the sparse part have a larger element interval as compared to UCA

whose element interval is the same for all elements. In this case, the CRLB

performance of the NSCA and UCA becomes very close to each other and same

for higher SNR cases as shown in blue curve and black dots in Fig. 2. The result in

Fig. 2 for the two circularly configured planar arrays is comparable which proves

the CRLB derivation works for an arbitrary circularly configured planar array for

underdetermined DOA estimation.

In Fig. 3, a plot of the proposed CRLB expression for different number of

sources as a function of SNR, with 5000 snapshots is shown using NSCA. In this

figure, we observe that the CRLB in the case of an overdetermined DOA estimation

is inversely proportional to the SNR. In an underdetermined DOA estimation

scenario, the value of the CRLB becomes stagnant as the SNR increases. In this

case, as SNR converges to infinity, the CRLB converges to a positive constant

which is as a result of asymptotic behavior of the MSE error of the CRLB for

D � M which is quite different in the case when D � M. This kind of behavior is

often observed in the case of underdetermined DOA estimation for linear arrays.

Such behavior is also observed in the case of circularly configured planar arrays.

Fig. 2. A comparison of CRLB versus SNR for UCA and NSCA with
different number of elements M for 7 sources (D ¼ 7).
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5 Conclusion

In this paper, we derived a closed-form expression for the CRLB of circularly

configured planar arrays for underdetermined DOA estimation. We performed a

numerical comparison of the CRLB for circular array geometries; NSCA and UCA.

In the underdetermined DOA estimation case, as the SNR tends to infinity, the CRB

stagnates to a constant value. From the results of two circularly configured planar

arrays, we obtained a comparable result which proves that the CRLB derivation

works for a circularly configured planar array for underdetermined DOA estima-

tion. These results can be a good starting point to benchmark DOA estimation

algorithms for circular planar arrays.

Fig. 3. CRB versus SNR for NSCAwith M ¼ 6, snapshots = 5000, for
different number of sources D

© IEICE 2018
DOI: 10.1587/elex.15.20180193
Received February 21, 2018
Accepted February 26, 2018
Publicized March 9, 2018
Copyedited March 25, 2018

6

IEICE Electronics Express, Vol.15, No.6, 1–6


