
MALMM: A multi-array
architecture for large-scale
matrix multiplication on
FPGA

You Huang1,2a), Junzhong Shen1,2, Yuran Qiao1,2, Mei Wen1,2,
and Chunyuan Zhang1,2
1 College of Computer, National University of Defense Technology,

Changsha 410073, China
2 National Key Laboratory for Parallel and Distributed Processing,

National University of Defense Technology, Changsha 410073, China

a) hy690212@163.com

Abstract: Large-scale floating-point matrix multiplication is widely used in

many scientific and engineering applications. Most existing works focus on

designing a linear array architecture for accelerating matrix multiplication on

FPGAs. This paper towards the extension of this architecture by proposing

a scalable and highly configurable multi-array architecture. In addition, we

present a work-stealing scheme to ensure the equality in the workload

partition among multiple linear arrays. Furthermore, an analytical model is

developed to determine the optimal parameters for matrix multiplication

acceleration. Experiments on real-life convolutional neural networks (CNNs)

show that we can obtain the optimal extension of the linear array architecture.

Keywords: matrix multiplication, field-programmable gate arrays

(FPGAs), work-stealing

Classification: Integrated circuits

References

[1] J. Shen, et al.: “Towards a multi-array architecture for accelerating large-scale
matrix multiplication on FPGAs,” arXiv preprint arXiv:1803.03790 (2018).

[2] Y. Dou, et al.: “64-bit floating-point FPGA matrix multiplication,” Proc. ACM
International Symposium on Field-programmable Gate Arrays (FPGA’05)
(2005) 86 (DOI: 10.1145/1046192.1046204).

[3] Z. Jovanovic and V. Milutinovic: “FPGA accelerator for floating-point matrix
multiplication,” IET Comput. Digit. Tech. 6 (2012) 249 (DOI: 10.1049/iet-cdt.
2011.0132).

[4] L. Zhuo and V. K. Prasanna: “Scalable and modular algorithms for floating-
point matrix multiplication on reconfigurable computing systems,” IEEE Trans.
Parallel Distrib. Syst. 18 (2007) 433 (DOI: 10.1109/TPDS.2007.1001).

[5] V. B. Y. Kumar, et al.: “FPGA based high performance double-precision matrix
multiplication,” Proc. International Conference on VLSI Design (VLSI’09)
(2009) 341 (DOI: 10.1109/VLSI.Design.2009.13).

[6] Y. Qiao, et al.: “Fpga-accelerated deep convolutional neural networks for high
throughput and energy efficiency,” Concurrency Computat.: Pract. Exper. 29

© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

1

LETTER IEICE Electronics Express, Vol.15, No.10, 1–12

http://dx.doi.org/10.1145/1046192.1046204
http://dx.doi.org/10.1145/1046192.1046204
http://dx.doi.org/10.1145/1046192.1046204
http://dx.doi.org/10.1049/iet-cdt.2011.0132
http://dx.doi.org/10.1049/iet-cdt.2011.0132
http://dx.doi.org/10.1049/iet-cdt.2011.0132
http://dx.doi.org/10.1049/iet-cdt.2011.0132
http://dx.doi.org/10.1109/TPDS.2007.1001
http://dx.doi.org/10.1109/TPDS.2007.1001
http://dx.doi.org/10.1109/TPDS.2007.1001
http://dx.doi.org/10.1109/TPDS.2007.1001
http://dx.doi.org/10.1109/VLSI.Design.2009.13
http://dx.doi.org/10.1109/VLSI.Design.2009.13
http://dx.doi.org/10.1109/VLSI.Design.2009.13
http://dx.doi.org/10.1109/VLSI.Design.2009.13
http://dx.doi.org/10.1109/VLSI.Design.2009.13


(2016) e3850 (DOI: 10.1002/cpe.3850).
[7] R. D. Blumofe and C. E. Leiserson: “Scheduling multithreaded computations

by work stealing,” J. ACM (JACM) 46 (1999) 720 (DOI: 10.1145/324133.
324234).

[8] A. Krizhevsky, et al.: “Imagenet classification with deep convolutional neural
networks,” Advances in Neural Information Processing Systems (2012) 1097.

[9] J. Cong and B. Xiao: “Minimizing computation in convolutional neural
networks,” Proc. International Conference on Artificial Neural Networks
(2014) 281 (DOI: 10.1007/978-3-319-11179-7_36).

[10] K. Simonyan and A. Zisserman: “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556 (2014).

[11] C. Szegedy, et al.: “Going deeper with convolutions,” Cvpr (2015) (DOI: 10.
1109/CVPR.2015.7298594).

[12] D. Yi, et al.: “Learning face representation from scratch,” arXiv preprint
arXiv:1411.7923 (2014).

[13] K. He, et al.: “Deep residual learning for image recognition,” Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (2016) 770 (DOI: 10.
1109/CVPR.2016.90).

1 Introduction

Large-scale floating-point matrix multiplication is widely used in many compli-

cated computation tasks such as scientific computing and deep learning. Recently,

modern field-programmable gate arrays (FPGAs) have been becoming a prevailing

option for accelerating large-scale matrix multiplication due to their reconfigur-

ability and abundant logic resources. Previous studies [2, 3, 4, 5] have primarily

focused on accelerating matrix multiplication on FPGAs by using an efficient

architecture, i.e. the one-dimensional systolic array. This architecture was demon-

strated successfully in matrix multiplication acceleration, which contributes to low

bandwidth requirement and good scalability of the accelerator designs. As the

increase of the massive parallel resources of FPGAs, extending this linear archi-

tecture can be an attractive option for accelerating large-scale floating-point matrix

multiplication.

In this paper, we focus on the extension of the linear array architecture.

According to our studies, there exist two approaches to extend the linear array

architecture: 1. increasing the length of the linear array; 2. adopting multiple

parallel linear arrays. However, all of these approaches can hardly ensure the

computation efficiency of the accelerator, if we adopt a fixed architecture for

various problem sizes. This paper address this challenge by proposing a config-

urable multi-array architecture. Different from previous designs which only adopt

fixed structures for matrix multiplication acceleration, our design allows adjusting

the structure dynamically, by changing the number of PEs in used as well as the PE

arrays work in parallel.

This paper is extended from our previous work [1]. Compared to [1], the

following improvements are made: 1. the extension of linear architecture is further

discussed in this paper; 2. optimization of the work-stealing scheme is presented,

which effectively improves the performance of the accelerator; 3. we apply our

© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

2

IEICE Electronics Express, Vol.15, No.10, 1–12

http://dx.doi.org/10.1002/cpe.3850
http://dx.doi.org/10.1002/cpe.3850
http://dx.doi.org/10.1002/cpe.3850
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1007/978-3-319-11179-7_36
http://dx.doi.org/10.1007/978-3-319-11179-7_36
http://dx.doi.org/10.1007/978-3-319-11179-7_36
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90


structure to a wide range of CNN benchmarks, which demonstrates the high

efficiency of our multi-array architecture.

The main contributions of this paper can be summarized as follows:

1. We propose an FPGA-based matrix multiplication accelerator with a config-

urable multi-array structure, with support for a work-stealing scheme to

optimize workload partition among PE arrays.

2. Based on the design, we formulate a performance model to estimate the

execution time of the proposed accelerator by evaluating the realistic memory

bandwidth as well as quantifying data traffic volumes. With the help of the

proposed model, the optimal configuration of the multi-array architecture can

be obtained.

3. As a case study, we evaluate the accelerator using several real-life CNN

models. Besides, we obtain the optimal extension of the linear array archi-

tecture for each CNN model and achieve good performance.

2 Background and related work

2.1 Background

In this paper, we focus on the dense matrix multiplication problem C ¼ A � B,

where matrix A 2 R
M�K , B 2 R

K�N and C 2 R
M�N , respectively. The calculation

of matrix C is given by

ci;j ¼
Xn
k¼1

ai;k � bk;j: ð1Þ

Due to on-chip resource limitation, blocking large-scale matrix multiplication

into fine-grained sub-block computational tasks is required. Here, we introduce

the block matrix multiplication algorithm in Dou [2], which has been proved to be

successful in matrix multiplication acceleration. As shown in Fig. 1, matrix A is

split into dM=Sie sub-blocks (namely SA) of size Si � K and matrix B is partitioned

into dN=Sje sub-blocks (namely SB) of size K � Sj. In this way, the result matrix C

can be calculated by performing sub-block matrix multiplications on the SAi and

SBj, where i 2 ½1; dM=Sie� and j 2 ½1; dN=Sje�. The basic idea of this algorithm is

to split the multiplication of SAi and SBj into multiple inner-product operations of

two vectors, i.e Uk and Vk, where Uk is the kth column of SAi and Vk is the kth row

of SBj (k 2 ½1; K�). Here we define Ci;j as the product of SAi and SBj, then Ci;j can

be calculated by accumulating C1, C2, …, and CK iteratively.

Fig. 1. block matrix multiplication.

© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

3

IEICE Electronics Express, Vol.15, No.10, 1–12



2.2 Related work

Attempts to implement floating-point matrix multiplication on FPGAs have been

widely presented in literature [2, 3, 4, 5, 6]. However, the majority of implementa-

tions share a very similar structure— a linear array of PEs.

Dou et al. [2] proposed a general parallel block matrix multiplication algorithm

as well as a scalable linear array of PEs to implement the algorithm. Zhuo et al. [4]

proposed three parameterized algorithms that are suitable for matrix multiplication

of various size. However, their realistic evaluations were mainly based on small

problem sizes due to the resource constraints on FPGAs. Kumar et al. [5] presented

two designs which used build-in floating-point IP cores, thereby achieved high

frequency. However, their designs used broadcast operations which introduced

complicated routing. [3] proposed an architecture which returned the results block

as soon as they were computed, and left final accumulation to the host. However,

its performance depends on communication link speed. Different architectures do

exist. An FPGA-based matrix multiplier proposed by Qiao et al. [6] contained

several parallel chains. However, evaluations on the intensified memory access

conflicts among PE arrays were not provided in their work. To the best of our

knowledge, there have not yet been many efforts to adopt multi-array architecture

for matrix multiplication acceleration on FPGAs. In this paper, we extend the linear

architecture to a configurable multi-array structure.

3 Proposed architecture

3.1 Linear architecture extension

Majority of previous works mainly focus on single-array architecture, which

contributes to low bandwidth requirement and good scalability of the accelerator

designs. Since the massive parallel resources of FPGAs continue to increase,

extending this linear architecture becomes an attractive option for accelerating

large-scale floating-point matrix multiplication. Two extension options can be

summarized from previous work [4, 5]. Fig. 2(a) shows the method of adding

more PEs in the array to extend the architecture. This method can remain the

advantage of low bandwidth requirement of the original linear architecture, and the

computational throughput of the accelerator can be effectively improved (which is

proportional to number of PEs). However, with the increase of the number of PEs,

the transfer delay between PEs is also getting worse [5]. This is because the input

data are only delivered between adjacent PEs, and large delay are required for the

PEs that located at the end the PE arrays (i.e. PE6, PE7 in Fig. 2a), especially when

the number of PEs are large. As a result, the computational throughput of the

(a) (b)

Fig. 2. (a) Linear extension; (b) Parallel extension.

© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

4

IEICE Electronics Express, Vol.15, No.10, 1–12



accelerator may not increase linearly with the number of PEs. Another method is

to expand the single PE array to multiple parallel PE arrays, which is shown in

Fig. 2(b). As we can see from Fig. 2(b), there exist external memory access

conflicts between two parallel PE arrays. As a result, this method significantly

increases the memory bandwidth requirement [2]. The advantage of this method is

that the transfer delay between PEs does not deteriorate due to the changeless

length of the linear array. Since the actual bandwidth is a limiting factor, the

number of PE arrays should be taken into consideration.

3.2 Multi-array architecture

Combining the above methods, we propose a configurable multi-array architecture.

Note that this multi-array architecture is mainly extended from the work [2].

However, we make the following improvements which differ from theirs. As

shown in Fig. 3, firstly, we extend the single-array architecture into multi-array

architecture. Secondly, to support dynamic changing the number of PEs in an array

as well as the number of PE arrays, we place a configurable multiplexer between

two adjacent PE arrays (detailed follows). In this way, we can adjust the archi-

tecture dynamically according to the memory bandwidth budget of targeted FPGA

platform. Thirdly, we implement additional control units to support arbitrary block

size, and a phase synchronization unit is introduced to guarantee the correctness

when the block sizes of A and B are different. It also can be seen from Fig. 3, the

proposed architecture is composed of several modules, including Memory Access

Controller (MAC), Workload Queue Management (WQM), and Matrices Process-

ing Engine (MPE). Due to limited amount of on-chip memory on FPGAs, source

data and results are stored in the external memory (i.e. the DDR chip). MAC is

responsible for data transfer management between DDR and MPE. MPE contains

several linear PE arrays which can work in parallel. WQM manages workload

queues for all PE arrays and employs dynamic load balancing on the workloads.

3.3 MPE design

As shown in Fig. 3, the MPE module consists of several linear arrays of PEs, in

addition with some multiplexers placed between adjacent PE arrays.

We apply two operation modes in the two adjacent PE arrays, namely the

Independent mode and the Cooperation mode. In the Independent mode, the

multiplexer between the PE arrays is disabled, meaning that the PE arrays can

Fig. 3. Block diagram of our proposed architecture.

© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

5

IEICE Electronics Express, Vol.15, No.10, 1–12



execute computation tasks independently without any data communication. While

in the Cooperation mode, the multiplexer between the PE arrays is enabled. As a

result, the data paths of the PE arrays are connected by the multiplexer. As shown

in Fig. 3, the PE array that placed behind a multiplier can fetch data from the

proceeding PE array in this mode. In Cooperation mode, the required memory

bandwidth of the PE arrays is lower since the PE arrays share the same memory

interface when they are connected. The memory access conflicts can be reduced

since the connected PE arrays share the same memory interface. In addition, larger

block sizes can be supported in the Cooperation mode since the number of PEs in

the connected array has increased. Note that the multipliers are initialized by the

host CPU, and our architecture preserves the scalability of the linear array

architecture.

The fully pipelined structure of PE is presented in the right part of Fig. 3. The

PE consists of two sets of data registers for input data buffering, three First-In-First-

Outs (FIFOs) for delivering data between PEs, local memory for temperate data

storing, and floating-point multiply-and-accumulate unit (FMAC). Different from

previous studies, we implement additional control units to support arbitrary block

size. In addition, we implement a phase synchronization unit (PSU ) to guarantee

the correctness of the final results when the block sizes for matrices A and B are

different. By conditionally inserting stalls into the computation pipeline of the PE,

the PSU ensures that the kth column of SA and kth row of SB are fetched into each

PE simultaneously. The dataflow in each PE consists of three stages:

Prefetch. In this stage, the PE picks up the corresponding element in V1 (i.e. the

first column of SA) based on the PE identifier (PID), then stores the data into the

local register Ra. For instance, PE1 with PID ¼ 1 will picks up the second element

in V1.

Compute. In this stage, the kth row of SB (i.e. Uk) and the ðk þ 1Þth column of

SA (i.e. Vkþ1) are fetched into the PE simultaneously, where 1 < k � K. The

buffered element in Ra is multiplied with all the elements of SBk in order. Therefore,

the data buffered in Ra is reused Sj times. In the meantime, the PE also buffers the

corresponding data in Vkþ1 into Ra. Note that we apply double buffering in Ra to

overlap buffering data of the next iteration and computation of the current iteration.

The products of the multipliers in FMAC are then added with the intermediate

results generated in the previous iteration, which are stored in the local memoryMc.

Finally, the newly sums are written back into the Mc. Note that in the last iteration

(i.e. k ¼ K ), the final results are written into FIFO fc instead of Mc.

Write back. In this stage, the PE (except PE0) sends its local results to the

proceeding PE from the fc. As a results, the result data are delivered from the end

of each independent PE arrays to the MAC module.

3.4 WQM design

The WQM module is responsible for workloads assignment for the PE arrays. It

manages multiple workload queues to buffer the computation tasks for the PE

arrays. Note that one workload queue corresponds to one PE array. For the

proposed multi-array architecture, the steadiness of an even partition of workloads

among PE arrays is the key to achieve better performance. Since the workloads are

© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

6

IEICE Electronics Express, Vol.15, No.10, 1–12



not always equally partitioned, the system performance would be bottlenecked by

the PE array with the most workloads. To address this issue, we adopt the work-

stealing scheme [7] in the design of the WQM module.

The basic idea of the work-stealing scheme is to enable an idle PE array to

acquire computation tasks from the overloaded PE array(s). Fig. 4 depicts the

working procedure of the work-stealing scheme, a controller (omitted in Fig. 4) is

designed to manage the workload delivery among the workload queues. It can be

seen that a counter is implemented to record the number of tasks for each workload

queue. Note that in our previous work [1] only when a workload queue becomes

empty will the controller steal a task from a nonempty queue. However, during the

stealing procedure, the PE array corresponding to the empty workload queue has

to wait for the arrival of the workload. This leads to additional latency to task

scheduling, thus performance deterioration. In this work, we overcome the above

defect in [1] by proposing a better solution. The key idea of our optimization is to

set a threshold for the counters. As shown in the bottom right part of the Fig. 4,

once the number of tasks the counter record is no more than one, the controller will

transfer a task to the workload queue with least tasks from the workload queue with

the most workloads. In this way, the least task workload queue remains nonempty,

which makes the related PE array keep working. The above task scheduling is

executed in parallel with PE arrays, which effectively overlaps transmission and

computation time. Moreover, we implement a round-robin arbiter in the controller

to arbitrate multiple concurrent work-stealing requests. The controller repeats the

detection and arbitration during the entire computation procedure of the PE arrays.

It’s important to note that the work-stealing scheme mainly benefits the structure

with more PE arrays. It is because the more the number of parallel PE arrays, the

harder the workloads is to be equally partitioned.

3.5 MAC design

The MAC module is responsible for managing data transfer between the external

memory and the accelerator. As shown in Fig. 4, the workloads executed by the

MAC module are organized by a self-defined data structure named buffer descrip-

tor. A buffer descriptor contains the following parameters: ADDR specifies the

memory locations that store the sub-matrices; STR specifies the stride of each

memory transfer; BZ specifies the block sizes and ITER K specifies the iteration

(K).

Fig. 4. Illustration of our proposed work-stealing scheme.

© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

7

IEICE Electronics Express, Vol.15, No.10, 1–12



As mentioned in the above context, elements of matrix A are fetched into the

PE arrays in column-major order. However, the matrix A is stored in row-major

order. Therefore, the access of matrix A may cause inefficient memory bandwidth

utilization. To improve the effective memory bandwidth, we transpose matrix A to

allow its data to be fetched in row-major order. In this way, the burst transfer mode

that favored by the external memory can be used to access both matrices A and B.

As a result, the memory bandwidth for the accelerator is significantly improved,

which contributes to performance improvement of the overall system.

4 Performance modeling

In this section, we will illustrate how to determine the optimal solution of mapping

the block matrix multiplication algorithm onto the multi-array architecture.

Let the bandwidth of the off-chip memory be BW (B/s, i.e. Bytes per second),

the number of PE in a single PE array be P (when all the multiplexers are disabled),

the number of PE arrays work in parallel be Np, block size of the matrix A (on

rows) be Si and block size of the matrix B (on columns) be Sj. For A of size M � K

and B of size K � N, the average number of sub-block matrix multiplications

performed by each PE array can be expressed as:

Nwork ¼ 1

Np
� M

Si

� �
� N

Sj

� �� �
: ð2Þ

Note that we pad matrices A and B with zeros if M and N are not integer

multiples of Si and Sj. In addition, the time (in seconds) taken to load a workload

(i.e. SAi and SBj) and write back the corresponding Ci;j can be calculated by:

Twork ¼ 4 � ðSi � K þ Sj � K þ Si � SjÞ=BW ; ð3Þ
where term 4 � ðSi � K þ Sj � KÞ represents the traffic volume of input data (in

bytes), and term 4 � ðSi � SjÞ is the amount of corresponding results. To simplify

the model, we assume that all the workloads are equally partitioned. Therefore,

the time taken to transfer data between the external memory and the PE arrays can

be expressed as Ttrans ¼ Nwork � Twork . According to the data path described in

section III, the computation time Tcompute (in seconds) of a single PE array can be

determined as follows:

Tcompute ¼ Nwork � ðSi þ maxfSi; Sjg � K þ StagefmacÞ=Facc; ð4Þ
where Stagefmac denotes the stages of the computation pipeline in each PE, and Facc

is the working frequency of the accelerator. Since the memory access and

computation process are overlapped in our architecture, it is difficult to directly

estimate the execution time of the accelerator. However, the lower bound and upper

bound of the execution time Ttotal can be determined by:

Tcompute < Ttotal < Ttrans þ Tcompute: ð5Þ
To simplify the discussion on the parameters that affect Ttotal, we assume

Si ¼ Sj for the rest of this paper. It can be inferred that the attainable memory

bandwidth BW for each PE array is mainly affected by Np and Si, which can be

expressed by BW ¼ fðNp; SiÞ.© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

8

IEICE Electronics Express, Vol.15, No.10, 1–12



This is because Si determines the burst length of memory access, and Np affects

the conflicts of memory accesses of the PE arrays. From the above equations, it can

be seen that Np and Si are the key factors that affect the performance of our

accelerator. To reduce the size of design space, the constraints on Np and Si are

considered. We observe that there exists a relationship between Si and Np.

Assuming Pm represents the maximum number of the independent PE arrays (when

all the multiplexers are disabled), the relationship between Np and Si can be

determined as:

Np 2 f1; 2; 3; . . . ; Pmg; if 1 � Si � P

Np 2
�
1; 2; . . . ;

�
Pm

2

��
; if P < Si � 2P

. . .

Np 2 f1; 2; . . . ; ng; if

�bPm=nc
2

�
� P < Si �

�
Pm

n

�
� P

. . .

Np ¼ 1; if

�
Pm

2

�
� P < Si � Pm � P

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

: ð6Þ

To this end, the size of design space can be constrained by equation 6. Given

the fixed problem size and Pm � P (i.e. the total number of PEs), the proposed

analytical model can be used to determine the optimal hSi; Npi that minimizes the

range of Ttotal. For better understanding, we give a example of Pm ¼ 4. Without

constraints, there exist Pm � P � Pm ¼ 16P possibilities for the space design.

However, by using the equation 6, the range of Np and Si can be restricted. As a

result, the size of design space can be reduced to 4P þ 2P þ 2P ¼ 8P.

5 Experimental results

In this section, we evaluate the effectiveness of our proposed performance model.

In addition, we present our on-board test based on the guidance of the models. The

FPGA platform used in our experiment is the Xilinx VC709 board, which contains

a XC7VX690T FPGA and two DDR3 DRAMs. All synthesized results are

obtained from Xilinx Vivado 2016.4.

In order to quantify function f, we evaluate the average effective memory

bandwidth of a PE array in terms of block sizes and number of PE arrays. As

shown in Fig. 5, two observations can be found. First, the effective memory

bandwidth goes up with the increase of block size. Second, the effective bandwidth

declines when we increase the number of PE arrays.

As a case study, we use real-life CNN models (AlexNet [8], VGG-16 [10],

C3D, GoogleNet [11], FaceNet [12], ResNet-18 [13]) to illustrate the validity of our

performance model. The main operations in these CNN algorithms (e.g. Convolu-

tional layers, Fully Connected layers) can be represented by matrix multiplication

[9]. Note that we focus on determining the optimal design parameters under fixed

Pm and P, therefore we do not make full use of the resource of the FPGA to pursuit

maximum performance. In our experiment, we set Pm ¼ 4 and P ¼ 64. After post-

synthesis, a maximum frequency of 200MHz (Facc) is achieved. Table I summa-

rized the resource utilization of the overall system. It can be seen that the overall

© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

9

IEICE Electronics Express, Vol.15, No.10, 1–12



resource utilization is below 50%, which contributes to the high frequency of our

accelerator.

We give a detailed comparison between the predicted and actual execution time

for a convolution layer of AlexNet in Fig. 6. It can be seen that the predicted lower

bound of execution time closely follows the actual measurement when the memory

requirement of each PE array is satisfied. However, when the memory bandwidth

requirement is unsatisfied, the actual time of each PE array becomes more close to

Fig. 5. Effective memory bandwidth with varying block size and
number of PE arrays.

Table I. FPGA resource utilization

Resource DSP Bram LUT FF

Available 3600 2940 433200 866400

Utilization 1032 (28%) 560 (19%) 193765 (45%) 292644 (34%)

(a) Np = 1 (b) Np = 2

(c) Np = 3 (d) Np = 4

Fig. 6. Comparing actual measurement of execution time with its
predictions for conv-2 of AlexNet.

© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

10

IEICE Electronics Express, Vol.15, No.10, 1–12



the upper bound of predicted execution time. In addition, it can be found that using

multiple PE arrays does not always bring benefits. For example, the case of

ðNp; SiÞ ¼ ð1; 32Þ is better than ðNp; SiÞ ¼ ð2; 16Þ. The main reason is that both of

the cases are memory-bound (<1:6GB/s) and the case of ðNp; SiÞ ¼ ð1; 32Þ can

reach higher memory bandwidth (it can be confirmed by Fig. 5), which contributes

to its higher performance.

The optimal hNp; Sii of all the layers in AlexNet is given in Table II. It can be

seen that when compared to other extension approaches, i.e extending the number

of PEs only ðNp ¼ 1; P ¼ 256Þ and extending the number of PE arrays only

(Np ¼ 4; P ¼ 64), our accelerator that implemented with the optimal hNp; Sii
reaches the highest performance for all layers. Note that because of our further

optimization for work-stealing scheme, the results of all the layers in AlexNet are

updated. Since our work-stealing scheme mainly benefits the structure with more

parallel PE arrays, only the case of ðNp; SiÞ ¼ ð4; 64Þ obviously improves the

performance. As a result, the optimal hNp; Sii of Conv-3 and Conv-4 are also

updated to ð4; 64Þ. To demonstrate the effectiveness of our optimization, we

compare our original work [1] with the optimized design on the case of

ðNp; SiÞ ¼ ð4; 64Þ. As shown in Table III, we achieve better performance for all

layers of AlexNet compared to our previous work (up to 22% increase), which

demonstrates that the additional workloads scheduling time is effectively reduced.

Table IV shows the peak performance and the overall performance of each CNN

model. The second column (i.e. M � N � K) in Table IV represents the scale of the

transformed matrices of the computational layer in each CNN model. ðNp; SiÞ are
the optimal parameters for peak performance layer. Note that the scale of the

transformed matrices also affects the performance of the accelerator. As shown in

Table IV, the overall performance of each CNN model varies widely. Since

theoretical peak performance of the proposed architecture is denoted by

2 � Facc � Pm � P [2], peak efficiency is given in Table IV (where peak efficien-

cy = actual peak performance/theoretical peak performance). The results of all

CNN models show that our multi-array architecture can reach high computation

efficiency.

Table II. Optimal ðNp; SiÞ of all layers in AlexNet.

Layers M � K � N
Optimal Performance (GFLOPS)

ðNp; SiÞ Optimal Np ¼ 4 Np ¼ 1

Conv-1 96 � 363 � 3025 ð2; 128Þ 59.7 58.5� 49.2

Conv-2 128 � 1200 � 729 ð2; 128Þ 87.8 72.1� 61.4

Conv-3 384 � 2304 � 169 ð4; 64Þ� 77.3� 77.3� 57.4

Conv-4 192 � 1728 � 169 ð4; 64Þ� 64.2� 64.2� 51.2

Conv-5 128 � 1728 � 169 ð2; 128Þ 62.9 62.8� 43.9

fc-6 128 � 9216 � 4096 ð2; 128Þ 100.9 82.1� 70.7

fc-7 128 � 4096 � 4096 ð2; 128Þ 99.3 81.5� 69.5

fc-8 128 � 4096 � 1000 ð2; 128Þ 96.9 85.9� 67.8
�means updated performance of our accelerator using optimized work-stealing
scheme.

© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

11

IEICE Electronics Express, Vol.15, No.10, 1–12



6 Conclusion

In this paper, we present MALMM, a multi-array architecture for large-scale matrix

multiplication, which is highly configurable and scalable. To improve the perform-

ance of MALMM, we propose a optimized work-stealing scheme to achieve better

workload balancing among PE arrays. Since our focus is to obtain the optimal

design options for the architecture extension, an efficient analytical model is also

developed. Moreover, we evaluate our design using several CNN models on a

VC709 board. As a result, our accelerator with optimal extension can reach the high

performance and computation efficiency for all CNN models.

Acknowledgments

This work was supported by National Program on Key Basic Research Project

2016YFB1000401 and 2016YFB1000403.

Table III. Comparison with our previous work.

Np ¼ 4
Performance (GFLOPS)

C1 C2 C3 C4 C5 f6 f7 f8 Overall

[1] 57.1 70.3 62.9 54.8 44.9 79.3 78.1 83.6 66.3

This work 58.5 72.1 77.3 64.2 62.8 82.1 81.5 85.9 73.1

Table IV. Optimal ðNp; SiÞ of peak performance in each CNN model
(batch size is 128).

CNN
M � N � K ðNp; SiÞ

GFLOPS Peak

Models Peak Overall Efficiency

AlexNet 128 � 9216 � 4096 ð2; 128Þ 100.9 79.56 98.5%

VGG-16 128 � 4096 � 4096 ð2; 128Þ 99.3 83.4 96.9%

C3D 128 � 4096 � 3025 ð2; 128Þ 99.2 80.9 96.8%

GoogleNet 128 � 1024 � 1024 ð2; 128Þ 90.9 40.7 88.7%

FaceNet 128 � 320 � 10575 ð2; 128Þ 81.7 54.9 79.7%

ResNet-18 128 � 4068 � 1000 ð2; 128Þ 96.9 64.9 94.6%

© IEICE 2018
DOI: 10.1587/elex.15.20180286
Received March 20, 2018
Accepted April 16, 2018
Publicized April 27, 2018
Copyedited May 25, 2018

12

IEICE Electronics Express, Vol.15, No.10, 1–12


