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Abstract: This paper presents the hardware architecture and VLSI imple-

mentations of a PCANet-based object detector. The proposed PCANet

model, cascaded with a linear support vector machine, can achieve better

classification performance than traditional handcrafted computer vision

methods, yet it is significantly more power efficient than multi-layer con-

volutional neural networks. The proposed pipeline hardware architecture,

when implemented using Synopsys 32 nm process technology, results in

27.4 fps while processing 1080P, with only 0.5 watt power consumption.

Targeted for the application of advanced driver assistance system, the

proposed design is evaluated on road marking and traffic light dataset with

an accuracy result of 96.8% and 93.1% respectively. Therefore, the proposed

VLSI implementation of PCANet algorithm provides a high-throughput and

power-efficient solution for object detection applications.

Keywords: PCANet, ADAS, low power, CNN, object detection, VLSI

Classification: Integrated circuits

References

[1] M. B. Jensen, et al.: “Vision for looking at traffic lights: Issues, survey, and
perspectives,” IEEE Trans. Intell. Transp. Syst. 17 (2016) 1800 (DOI: 10.1109/
TITS.2015.2509509).

[2] Y. K. Kim, et al.: “Real time traffic light recognition system for color vision
deficiencies,” International Conference on Mechatronics and Automation
(ICMA) (2007) 76 (DOI: 10.1109/ICMA.2007.4303519).

[3] A. De la Escalera, et al.: “Traffic sign recognition and analysis for intelligent
vehicles,” Image Vis. Comput. 21 (2003) 247 (DOI: 10.1016/S0262-
8856(02)00156-7).

[4] X. Wen, et al.: “Efficient feature selection and classification for vehicle
detection,” IEEE Trans. Circuits Syst. Video Technol. 25 (2015) 508 (DOI: 10.
1109/TCSVT.2014.2358031).

[5] D. M. Gavrila and S. Munder: “Multi-cue pedestrian detection and tracking
from a moving vehicle,” Int. J. Comput. Vis. 73 (2007) 41 (DOI: 10.1007/
s11263-006-9038-7).

[6] M. Mody, et al.: “High performance front camera adas applications on ti’s

© IEICE 2018
DOI: 10.1587/elex.15.20180396
Received April 18, 2018
Accepted May 2, 2018
Publicized May 28, 2018
Copyedited June 25, 2018

1

LETTER IEICE Electronics Express, Vol.15, No.12, 1–10

http://dx.doi.org/10.1109/TITS.2015.2509509
http://dx.doi.org/10.1109/TITS.2015.2509509
http://dx.doi.org/10.1109/TITS.2015.2509509
http://dx.doi.org/10.1109/TITS.2015.2509509
http://dx.doi.org/10.1109/TITS.2015.2509509
http://dx.doi.org/10.1109/ICMA.2007.4303519
http://dx.doi.org/10.1109/ICMA.2007.4303519
http://dx.doi.org/10.1109/ICMA.2007.4303519
http://dx.doi.org/10.1109/ICMA.2007.4303519
http://dx.doi.org/10.1016/S0262-8856(02)00156-7
http://dx.doi.org/10.1016/S0262-8856(02)00156-7
http://dx.doi.org/10.1016/S0262-8856(02)00156-7
http://dx.doi.org/10.1109/TCSVT.2014.2358031
http://dx.doi.org/10.1109/TCSVT.2014.2358031
http://dx.doi.org/10.1109/TCSVT.2014.2358031
http://dx.doi.org/10.1109/TCSVT.2014.2358031
http://dx.doi.org/10.1007/s11263-006-9038-7
http://dx.doi.org/10.1007/s11263-006-9038-7
http://dx.doi.org/10.1007/s11263-006-9038-7


tda3x platform,” IEEE 22nd International Conference on High Performance
Computing (HiPC) (2015) 456 (DOI: 10.1109/HiPC.2015.56).

[7] T.-H. Chan, et al.: “PCANet: A simple deep learning baseline for image
classification?” IEEE Trans. Image Process. 24 (2015) 5017 (DOI: 10.1109/
TIP.2015.2475625).

[8] W. Qadeer, et al.: “Convolution engine: Balancing efficiency & flexibility in
specialized computing,” ACM SIGARCH Computer Architecture News 41
(2013) 24 (DOI: 10.1145/2485922.2485925).

[9] J. Bruna and S. Mallat: “Invariant scattering convolution networks,” IEEE
Trans. Pattern Anal. Mach. Intell. 35 (2013) 1872 (DOI: 10.1109/TPAMI.2012.
230).

[10] Z. Huang, et al.: “Unsupervised domain adaptation for speech emotion
recognition using PCANet,”Multimedia Tools Appl. 76 (2017) 6785 (DOI: 10.
1007/s11042-016-3354-x).

[11] S. Wang, et al.: “Human fall detection in surveillance video based on pcanet,”
Multimedia Tools and Appl. 75 (2016) 11603 (DOI: 10.1007/s11042-015-
2698-y).

[12] B. Li, et al.: “A pcanet based method for vehicle make recognition,” IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC) (2016)
2404 (DOI: 10.1109/ITSC.2016.7795943).

[13] Y. Xie, et al.: “Fully-parallel area-efficient deep neural net-work design using
stochastic computing,” IEEE Trans. Circuits Syst. II, Exp. Briefs 64 (2017)
1382 (DOI: 10.1109/TCSII.2017.2746749).

[14] S. Moini, et al.: “A resource limited hardware accelerator for convolutional
neural networks in embedded vision applications,” IEEE Trans. Circuits Syst.
II, Exp. Briefs 64 (2017) 1217 (DOI: 10.1109/TCSII.2017.2690919).

[15] Z. Feng, et al.: “Dlanet: A manifold-learning-based discriminative feature
learning network for scene classification,” Neurocomputing 157 (2015) 11
(DOI: 10.1016/j.neucom.2015.01.043).

[16] Y. Gan, et al.: “Image classification with a deep network model based on
compressive sensing,” IEEE 12th International Conference on Signal Process-
ing (ICSP) (2014) 1272 (DOI: 10.1109/ICOSP.2014.7015204).

[17] O. Pina-Ramirez, et al.: “An fpga implementation of linear kernel support
vector machines,” IEEE Internal Conference on Reconfigurable Computing
and FPGA’s, ReConFig (2006) 1 (DOI: 10.1109/RECONF.2006.307784).

[18] T. Groleat, et al.: “Hardware acceleration of svm-based traffic classification
on fpga,” 8th International Wireless Communications and Mobile Computing
Conference (IWCMC) (2012) 443 (DOI: 10.1109/IWCMC.2012.6314245).

[19] V. Gokhale, et al.: “A 240 gops/s mobile coprocessor for deep neural
networks,” IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) (2014) 696 (DOI: 10.1109/CVPRW.2014.106).

[20] C. Farabet, et al.: “Hardware accelerated convolutional neural networks for
synthetic vision systems,” Proc. IEEE International Symposium on Circuits and
Systems (ISCAS) (2010) 257 (DOI: 10.1109/ISCAS.2010.5537908).

[21] C. Farabet, et al.: “Neuflow: A runtime reconfigurable dataflow processor for
vision,” IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW) (2011) 109 (DOI: 10.1109/CVPRW.2011.
5981829).

[22] P.-H. Pham, et al.: “Neuflow: Dataflow vision processing system-on-a-chip,”
IEEE 55th International Midwest Symposium on Circuits and Systems
(MWSCAS) (2012) 1044 (DOI: 10.1109/MWSCAS.2012.6292202).

[23] L. Cavigelli and L. Benini: “Origami: A 803-GOp/s/W convolutional network
accelerator,” IEEE Trans. Circuits Syst. Video Technol. 27 (2017) 2461 (DOI:
10.1109/TCSVT.2016.2592330).

© IEICE 2018
DOI: 10.1587/elex.15.20180396
Received April 18, 2018
Accepted May 2, 2018
Publicized May 28, 2018
Copyedited June 25, 2018

2

IEICE Electronics Express, Vol.15, No.12, 1–10

http://dx.doi.org/10.1109/HiPC.2015.56
http://dx.doi.org/10.1109/HiPC.2015.56
http://dx.doi.org/10.1109/HiPC.2015.56
http://dx.doi.org/10.1109/HiPC.2015.56
http://dx.doi.org/10.1109/TIP.2015.2475625
http://dx.doi.org/10.1109/TIP.2015.2475625
http://dx.doi.org/10.1109/TIP.2015.2475625
http://dx.doi.org/10.1109/TIP.2015.2475625
http://dx.doi.org/10.1109/TIP.2015.2475625
http://dx.doi.org/10.1145/2485922.2485925
http://dx.doi.org/10.1145/2485922.2485925
http://dx.doi.org/10.1145/2485922.2485925
http://dx.doi.org/10.1109/TPAMI.2012.230
http://dx.doi.org/10.1109/TPAMI.2012.230
http://dx.doi.org/10.1109/TPAMI.2012.230
http://dx.doi.org/10.1109/TPAMI.2012.230
http://dx.doi.org/10.1007/s11042-016-3354-x
http://dx.doi.org/10.1007/s11042-016-3354-x
http://dx.doi.org/10.1007/s11042-015-2698-y
http://dx.doi.org/10.1007/s11042-015-2698-y
http://dx.doi.org/10.1007/s11042-015-2698-y
http://dx.doi.org/10.1109/ITSC.2016.7795943
http://dx.doi.org/10.1109/ITSC.2016.7795943
http://dx.doi.org/10.1109/ITSC.2016.7795943
http://dx.doi.org/10.1109/ITSC.2016.7795943
http://dx.doi.org/10.1109/TCSII.2017.2746749
http://dx.doi.org/10.1109/TCSII.2017.2746749
http://dx.doi.org/10.1109/TCSII.2017.2746749
http://dx.doi.org/10.1109/TCSII.2017.2746749
http://dx.doi.org/10.1109/TCSII.2017.2690919
http://dx.doi.org/10.1109/TCSII.2017.2690919
http://dx.doi.org/10.1109/TCSII.2017.2690919
http://dx.doi.org/10.1109/TCSII.2017.2690919
http://dx.doi.org/10.1016/j.neucom.2015.01.043
http://dx.doi.org/10.1016/j.neucom.2015.01.043
http://dx.doi.org/10.1016/j.neucom.2015.01.043
http://dx.doi.org/10.1016/j.neucom.2015.01.043
http://dx.doi.org/10.1016/j.neucom.2015.01.043
http://dx.doi.org/10.1016/j.neucom.2015.01.043
http://dx.doi.org/10.1109/ICOSP.2014.7015204
http://dx.doi.org/10.1109/ICOSP.2014.7015204
http://dx.doi.org/10.1109/ICOSP.2014.7015204
http://dx.doi.org/10.1109/ICOSP.2014.7015204
http://dx.doi.org/10.1109/RECONF.2006.307784
http://dx.doi.org/10.1109/RECONF.2006.307784
http://dx.doi.org/10.1109/RECONF.2006.307784
http://dx.doi.org/10.1109/RECONF.2006.307784
http://dx.doi.org/10.1109/IWCMC.2012.6314245
http://dx.doi.org/10.1109/IWCMC.2012.6314245
http://dx.doi.org/10.1109/IWCMC.2012.6314245
http://dx.doi.org/10.1109/IWCMC.2012.6314245
http://dx.doi.org/10.1109/CVPRW.2014.106
http://dx.doi.org/10.1109/CVPRW.2014.106
http://dx.doi.org/10.1109/CVPRW.2014.106
http://dx.doi.org/10.1109/CVPRW.2014.106
http://dx.doi.org/10.1109/ISCAS.2010.5537908
http://dx.doi.org/10.1109/ISCAS.2010.5537908
http://dx.doi.org/10.1109/ISCAS.2010.5537908
http://dx.doi.org/10.1109/ISCAS.2010.5537908
http://dx.doi.org/10.1109/CVPRW.2011.5981829
http://dx.doi.org/10.1109/CVPRW.2011.5981829
http://dx.doi.org/10.1109/CVPRW.2011.5981829
http://dx.doi.org/10.1109/CVPRW.2011.5981829
http://dx.doi.org/10.1109/MWSCAS.2012.6292202
http://dx.doi.org/10.1109/MWSCAS.2012.6292202
http://dx.doi.org/10.1109/MWSCAS.2012.6292202
http://dx.doi.org/10.1109/MWSCAS.2012.6292202
http://dx.doi.org/10.1109/TCSVT.2016.2592330
http://dx.doi.org/10.1109/TCSVT.2016.2592330
http://dx.doi.org/10.1109/TCSVT.2016.2592330
http://dx.doi.org/10.1109/TCSVT.2016.2592330
http://dx.doi.org/10.1109/TCSVT.2016.2592330


[24] T. Wu and A. Ranganathan: “A practical system for road marking detection and
recognition,” IEEE Intelligent Vehicles Symposium (IV) (2012) 25 (DOI: 10.
1109/IVS.2012.6232144).

[25] M.-M. Cheng, et al.: “BING: Binarized normed gradients for objectness
estimation at 300 fps,” Proc. IEEE Conference on Computer Vision and Pattern
Recognition (2014) (DOI: 10.1109/CVPR.2014.414).

[26] T. Chen, et al.: “Road marking detection and classification using machine
learning algorithms,” IEEE Intelligent Vehicles Symposium (IV) (2015) 617
(DOI: 10.1109/IVS.2015.7225753).

[27] Z. Chen and X. Huang: “Accurate and reliable detection of traffic lights using
multiclass learning and multiobject tracking,” IEEE Intell. Transp. Syst. Mag. 8
(2016) 28 (DOI: 10.1109/MITS.2016.2605381).

1 Introduction

Recently, many industrial and academic research efforts have been focused on

ADAS (advanced driver-assistance systems). ADAS usually needs a sophisticated

fusion of sensors such as LiDAR, radar, and cameras. Among these sensors, optical

cameras are most widely used because of their low costs and easy installation. Also,

thanks to the rapid development of deep learning in computer vision, vision based

algorithms have become more accurate and more robust in varied driving environ-

ments [1].

With the popularity of deep learning, a lot of vision based solutions for

intelligent vehicles have been proposed, such as traffic light detection [2], traffic

sign recognition [3], vehicle detection [4], and pedestrian detection [5]. However,

few of these solutions can work in real time, which is very critical for intelligent

vehicles [6]. On the other hand, traditional computer vision algorithms cannot

handle the intra-class variability arising from varied lighting conditions, misalign-

ment, occlusion and corruptions, and non-rigid deformations [7]. In our work,

considering performance, throughput and power efficiency, we propose the

PCANet as the baseline detector for vision based ADAS solutions.

In this work, we designed efficient hardware architecture for PCANet on digital

VLSI circuits in 32 nm process technology. We successfully speeded up the PCANet

algorithm to 27.4 fps at 1080P while consuming less than 0.5 Watt of power. In this

way, we are able to provide a PCANet based single-chip solution for vision based

ADAS applications. The main contributions of this paper are as follows:

1. Proposing the PCANet as a potential baseline object detector for computer vision

systems where processing speed and performance are desired at the same time. The

PCANet outperforms traditional feature based algorithms, and is faster on training

and inference than CNNs.

2. Designing an efficient hardware architecture for PCANet, achieving 27.4 fps

throughput at 1080P, while consuming only 0.5 watt. Our implementation beats

typical CNN implementations such as ConvEngine [8] in both power efficiency and

throughput.

3. Proposing a single-chip solution specifically suitable for ADAS applications.

System integration has long been a tough task for ADAS. Unlike typical CNN
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chips, our chip design doesn’t rely on external memory thus can be used as a go-to

solution, largely reducing integration efforts.

The rest of this paper is organized as follows. Section 2 presents work related to the

PCANet, such as the hardware implementation of a convolutional neural network.

Section 3 derives the expression of the PCANet, illustrating how a PCA filter’s

coefficients are trained. Section 4 presents the hardware architecture of our PCANet

implementation. Section 5 presents results of our chip design in Synopsys 32 nm

process technology. Section 6 shows the performance of our PCANet chip on road

marking detection and traffic light detection. Finally, Section 7 concludes this work

and provides some future directions.

2 Related work

The idea of PCANet arises from wavelet scattering networks (ScatNet) [9], in

which the convolutional filters are prefixed, needing no training at all. Since

convolutional filters in a ScatNet are prefixed, the ScatNet does not generalize

very well to tasks where intra-class variability includes illumination change and

corruption [7], let alone vision based ADAS tasks. Adopting the simple architecture

of ScatNet and the robust performance of multi-layer CNNs, PCANet is fast to

train, and invariant to intra-class variability. PCANet has proven its usage in

applications like speech emotion recognition [10], human fall detection [11],

vehicle make recognition [12], and so on.

The PCANet resembles convolutional neural network (CNN) in many ways.

The way which PCA filters extract features is the same as convolutional compu-

tation. The binary quantization block in the PCANet mimics the feature pooling

layer in the CNN, and the block-wise histogram in the PCANet adds non-linearity

to the network. PCANet is relatively new, and this work is, to the best of our

knowledge, one of the first hardware implementations of PCANet. This work is

related to the existing hardware implementations of CNNs [13, 14].

There are other data processing networks like PCANet as well. Discriminative

locality alignment network (DLANet) has been proposed as a strong feature

extractor for scene classification [15]. A compressive sensing model (CSNet) is

proposed which has a cascaded structure similar to PCANet. Moreover, both CSNet

and PCANet use binary hashing, block-wise histogram, and linear SVM as part of

their calculations [16].

3 Algorithm of PCANet

In this section, PCANet’s structure is described in detail. Sequentially, an input

image is processed through several stages including patch-mean removal, PCA

filter with 2D convolution, binary quantization, block-wise histogram, and SVM

classification. Note that this work is focused on the implementation of the PCANet

detector and the training procedure is not implemented in hardware. Coefficients

of the PCA filter and SVM classifier are pre-trained offline using datasets from the

target applications.
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3.1 Patch-mean removal

Prior to applying the PCA filters, all pixels in the patch need to have zero mean.

Thus, the process is called “patch-mean removal”: calculating the mean of all pixels

in the patch and then subtract it from the pixel values. For each pixel in the image,

a patch is generated with the pixel at the center. For the pixels around the edges,

the image is padded with zeros. After removing its mean, each patch is stored

separately and goes through the PCA filter [7].

3.2 Training convolutional filters

The training procedure of PCANet works in this way: for a single training image, a

k-by-k sliding window is used to sample the training image to generate a sequence

of k-by-k image patches. A single k-by-k image patch can be regarded as a k2

element vector:

X ¼ ½x1x2; . . . ; xkk�: ð1Þ
Assuming there is a total of m training images, and each training image generates

n such k-by-k image patches. The k2 element vector contains k2 variance, and then

principal component analysis is applied to transform the vector X to a new

coordinate where the greatest variance lies on the first coordinate (also called the

first principal component), the second greatest variance on the second coordinate,

and so on. In network inference, multiplying with trained PCANet filters is like

transforming the input image to another coordinate. Generated feature maps are

in such an order that the first feature map contains the greatest variance, and the

second feature map contains the second greatest variance, and so on. The detailed

training procedure of PCANet can be referred to [7].

3.3 Linear support vector machine

After extracting meaningful PCANet features, a classifier also need to be trained to

make final decisions on the input image. In this letter, the linear SVM is used as the

classifier.

The function of SVM is to quickly separate hyperplanes between distinct

categories and to map those extracted features to high-dimensional feature spaces.

The advantage of SVM is that it is quick to train. In this paper, linear SVM is

applied, since it has better timing performance on hardware and is more efficient on

resource usage when compared to kernel-based SVMs [17]. Previous work [18]

shows that linear SVM achieves a good recognition rate for image classification.

Expression [2] gives the equation of the linear SVM.

y ¼ wxT þ b: ð2Þ

4 Hardware architecture of PCANet

For the implementation of PCANet on hardware, we chose typical values for input

image size, the number of stages of PCANet, and the PCA filter size. All the input

image patches are resized to 27-by-27 pixels. We set the convolutional filter size

to 7-by-7 and the number of filters at each stage to 8. Our software simulation

shows that these settings produce the most accurate classification results on target

applications.
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4.1 2D convolution

The operation of 2D convolution is to multiply data in a patch piece-wisely with

coefficients from each of the 8 different PCA filters and then to obtain the sum of

the 49 products. An adder tree is used for the sum up operation. Since there are 8

feature maps extracted at the first layer, we have instantiated 8 such 2D convolution

modules for the first layer of the PCANet on the hardware design.

4.2 Second stage computation

The first stage computation consists of one patch generation module, one patch-

mean removal module and eight 2D convolution modules. At the second stage,

each feature map from the first stage is again expanded by convolutions with 8

PCA filters. Thus, there are a total of 8 patch generation modules, 8 patch-mean

removal modules, and 64 2D convolution modules in second layer. The computa-

tional steps are almost identical to the first stage computations except for the

different bit width of data being processed.

At second stage, there are 64 such modules. A separate analysis shows that the

second stage’s computation makes up 90% of the chip area and power consump-

tion. To reduce resource usage and power consumption, we reused these modules at

the second stage. Additional buffers are inserted between the first stage and the

second stage. In this way, only 1 patch generation module, 1 patch-mean removal

module and 8 2D convolution modules are used in the second stage. The first stage

still uses 1 patch generation module, 1 patch-mean removal module and 8 2D

convolution modules. Our later VLSI results show that such an implementation

comes with a small chip size and low power consumption, and can still achieve a

high throughput.

4.3 Binary hashing module

After two layers of 2D convolutions, each of the 8 feature maps created by the

second stage need to be merged together. First, we take the sign of the input, then

multiply those signs with different weights of [128,64,32,16,8,4,2,1]. This process

is called binary hashing. On hardware, we first set up an 8-bit register, and then put

the sign of each data into different slots of this 8-bit register. The resulting 8-bit

register is the sum of these 8 weighted values. Such a structure eliminates the need

for multiplication operations, reducing power consumption.

4.4 Block-wise histogram

As the last step of the PCANet feature extraction, a histogram is needed to

generalize the features. After binary hashing, there are 8 feature maps, each

containing a 27-by-27 matrix of 8-bit data. Each single feature map is then divided

into 6-by-6 blocks, each block having 7-by-7 pixels. The first block is taken from

the up left corner of the feature map, then the block slides to the right by 4 pixels to

generate the second block. The block keeps sliding to the right until it slides out

of the 27-by-27 area, then it slides down by 4 pixels and starts from the leftmost

pixel to obtain the next block. A total of 6 � 6 ¼ 36 blocks are generated in this

way. For each block, one histogram ranging from 0 to 255 is then generated. A total

of 256 comparators and 256 6-bit counters are used, in 7 � 7 ¼ 49 clock cycles,
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data from one block is sent to such a circuit, all 256 features are generated at

the 50th clock cycle. The architecture of the histogram generation module is shown

in Fig. 1.

4.5 Linear support vector machine

Linear SVM makes the classification decision based on the PCANet features. In our

work, the input to SVM consists of 8 feature maps, each feature map contains 36

blocks, and each block has 256 histogram values. Therefore, each image patch

contains a total of 8 � 36 � 256 ¼ 73;728 PCANet features. Creating 73,728

multipliers on hardware will insanely increase power consumption. We need to

design an efficient SVM architecture for the such a large vector feature vector. In

our work, we decided to use a total of 128 multipliers through experiments. In this

way, we divided these features into small pieces and multiplied with coefficients

piece-wisely. A state machine based module is introduced to control the status of

the multiplications. Once all multiplications are completed, it proceeds to adding

with the bias and then providing the final classification results of the PCANet.

As explained in section 4.2, we only process one feature map at a time, and

there are 36 units working in parallel to extract histograms from a single feature

map. As indicated in Fig. 2, 36 buffers are used to store histogram results, and each

buffer contains 256 memory slots. On the other side of the input buffer array, at one

clock cycle, 128 features are taken for multiplication. After multiplication, an adder

tree is attached to compute the summation of these 128 data. SVM coefficients are

taken from 32 separate ROMs, with each ROM size 64-by-1024 bits.

Fig. 1. For one data, 256 comparators are used in parallel to
accumulate the right counter. After every data in a 7-by-7
block is processed, the counter results are loaded into buffers.
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5 Chip implementation results

5.1 VLSI results

The low power design achieves a highest frequency of 454.5MHz. Since the

PCANet only has a total of ð8 � 7 � 7 þ 64 � 7 � 7Þ � 2 bytes ¼ 6:9KB weights,

we are able to store all these weights to on-chip memory, which is a big difference

with other mainstream CNN chips. In this way, there is no need to take in weights

from external memory during computation.

The throughput bottleneck of the chip is at the second stage, to process one

candidate, 27 � 27 � 8=454:5M ¼ 12831:68 ns is needed. This is equivalent to a

processing speed 1 � 109=12831:68 ¼ 77;932 candidates per second.

5.2 Comparison with convolutional neural network

Convolutional neural networks have already been implemented on FPGAs, the

implementation on Zynq XC7Z045 SoC FPGA achieves a maximum frequency of

142MHz, while consuming 8 watts [19]. Another FPGA implementation of CNN

is on Xilinx Virtex-4 FPGA, operating at 200MHz with a power consumption of

15 watts [20]. Implementing a six-layer convolutional neural network requires 10

watts on a Xilinx Virtex-6 VLX240T board [21]. A state-of-the-art FPGA imple-

mentation achieves 10 fps with less than 10 watts power consumption [14].

VLSI in nature consumes less power and enables a higher frequency than

FPGAs, so we compare our work to other VLSI implementations. Typical CNN

chip implementations are shown in Table I.

Table I shows that our implementation achieves the best power efficiency, can

process at a higher data precision at the same time. Also note that in the Origami

paper, it reports a memory bandwidth of 525MB/s, which is equivalent to 88.5

frames of 1080P images in one second. We assume their design can exactly catch

up with the data streaming, 88.5 fps is their highest throughput.

Compared to other implementations, our implementation can process 77,932

27-by-27 images in one second, which is equivalent to 27.4 fps at 720P, comparable

to other CNN chips as shown in Table I. Also, one major difference is that our

implementation stands out as the only single-chip solution by storing all the

weights on chip, largely reducing integration effort.

Fig. 2. Hardware architecture of the linear SVM
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6 Performance evaluation results

In our work, targeting ADAS applications, we evaluated the PCANet detector on

road marking detection and traffic light detection.

6.1 Road marking detection

Road marking detection is a very important function for advanced driver assistance

systems. Previously, we evaluated the PCANet detector on road marking dataset

provided by Wu and Ranganathan [24]. The road marking dataset contains 1,443

street view images, each with a size of 800-by-600. There is a total of 11 road

markings in the dataset, we only selected 9 classes because the other 2 classes

do not provide enough samples for training. We randomly divided all images into

60/40 with no overlap.

For road marking detection, the BING algorithm [25] is used to proposal

potential image candidates. The BING algorithm can run at 300 fps on a single

laptop CPU and works well for road marking detection. In this letter, the BING

algorithm is used to proposal potential image candidates. Then, each proposed

image candidate is resized to be 27-by-27 and sent to the PCANet chip.

On the road marking dataset, we achieved an overall accuracy of 96.8% on 9

classes. As presented in the paper [26], PCANet classification accuracy is more

consistent and much better than the original road marking detection work done by

Wu and Ranganathan [24], especially on “FORWARD” sign detection, where

PCANet achieves an accuracy of 96.8%, far exceeding their achieved value of

23.13%.

6.2 Traffic light detection

Traffic light detection, especially red-light detection is very critical, ignoring a red

light can be life-threatening. In our work, we built up our own traffic light dataset

[27] around the city of Worcester, Massachusetts, USA. The traffic light dataset

contains video data collected during summer and winter. Our work showed that the

PCANet outperforms the HoG algorithm on traffic light detection. The comparison

of HoG and PCANet performance is shown in Table II.

Table I. Comparison of PCANet and CNN chip implementations

PCANet
Neuflow
[22]

Origami
[23]

ConvEngine
[8]

Chip Area/mm2 3.25 12.5 3.09 2.4

Power/W 0.49 0.6 1.24 0.76

Max Freq./MHz 454.5 400 350 204

VLSI
Process/nm

32 45 65 45

Throughput/fps 27.4 24 88.5 30

Image Size 1080P 500 � 375 1080P 1080P

Precision fixed24 fixed16 fixed12 fixed10
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7 Conclusion

In this paper, we investigate the PCANet algorithm and its hardware architecture as

a single-chip object detector. The PCANet detector achieves satisfactory perform-

ance on road marking detection and traffic light detection, and is applicable to many

other ADAS applications. The ASIC implementation is able to process 27.4 frames

of 1080P images per second, with the power consumption of only 0.5 watt.

Compared to other typical CNN based chip implementations, the PCANet imple-

mentation achieves better power efficiency and higher throughput. Moreover, the

PCANet only has 6.9K Bytes of weights that is much lesser than that of a CNN. All

weights can be stored on chip for fast data access. The proposed PCANet detector

is a high-throughput and power-efficient solution for real-time vision applications.
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Table II. Comparison of PCANet and CNN chip implementations

Precision Rate Recall Rate
Total True
Positives

HoG 80.3% 89.1% 3,586

PCANet 93.1% 93.2% 3,752
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