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Abstract: A variable-length, high-precision fixed-point pipeline FFT pro-

cessor design methodology is proposed in this article. As an example for

synthetic aperture radar (SAR) imaging processing, a radix-25 single-path

delay feedback (SDF) 32768-point FFT is implemented. By analyzing both

the two’s complement and canonic signed digit (CSD) representations of

the constant factors, the proposed configurable constant factor multipliers

(CCFM) can be configured to generate any constant factors applied in the

radix-25 algorithm. The variable length architecture can be built up by a

simple permutation and combination of radix-2 butterfly operations and

CCFM. With the look-up table (LUT) division technique, the twiddle factor

storage requirement is significantly reduced. The high precision fixed-point

calculation performance is achieved based on a memory reallocation (MR)

technique. When performing the non-maximum size FFT, by reallocating

the idle memory resources, the fixed-point calculation precision is improved.

Compared with conventional design methodology, the proposed fixed-point

FFT achieves an SQNR improvement of at least 18 dB and the circuit area is

reduced by at least 10%.
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1 Introduction

Fast Fourier transform (FFT) processors have been widely used in various appli-

cations such as communications [1], image processing [2], radar signal processing

[3], etc. Pipeline architectures have an inherent advantage over other efficient

hardware structures [4]. Single-path delay feedback (SDF), multi-path delay feed-

back (MDF) and multi-path delay commutator (MDC) architectures are usually

adopted. Radix-2k algorithm is suitable for pipeline architecture. As the radix

becomes higher, the number of occupied complex multipliers decreases [5].

Instead, more constant factors appear. It is also a bottleneck for the application

of higher radix FFT processors. The algorithms commonly used are radix-22, radix-

23 and radix-24 [6].

On the other hand, fixed-point processing is faster and less resource-intensive

compared with floating-point processing. Due to the finite word length effect, the

optimum bit sizing technique is adopted. In [7], the input word length is fine tuned

to 8-bit and the output word length is 12-bit. As for the internal word lengths, all

the computations are rounded to 10-bit. Our previous work [8] has also discussed

issues about the fixed-point word length configuration and signal-to-quantization-

noise-ratio (SQNR) assessment.

This paper proposes a configurable constant factor multiplier to improve the

flexibility of variable-length radix-2k pipeline FFT processor. For the twiddle factor

generation issue, we adopt a look-up table (LUT) division technique to reduce the

hardware cost. With the proposed memory reallocation technique, the problem of

increasing the feedback storage caused by a larger processing word length is

solved. High precision fixed-point arithmetic performance is achieved.© IEICE 2018
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2 Background

2.1 Requirement of SAR imaging

Large processing size, high precision and flexible processing length are three

specific characteristics for FFT processors used in space-borne SAR imaging

system. Different FFT sizes are shown in Table I, which depend on the different

SAR imaging modes and different radar parameters. PRF stands for pulse repetition

frequency of the transmitted signal. Nr and Na represent the sample numbers in

range and azimuth direction respectively. Specifically, Nr_zp and Na_zp are the

zero-padded points of integral power of 2, which related to Nr and Na. 2K∼32K-
point FFTs are required for SAR imaging. Our previous work [9] analyses the

necessity of adopting fixed-point processing with proper word length. 24-bit

processing word length is employed in SAR imaging systems generally. Based

on these requirements, we design a 2K∼32K variable-length, high-precision fixed-

point FFT processor.

2.2 Review of radix-2k FFT algorithm

In order to comprehend the constant factors in radix-2k algorithm, we review the

general expression of the radix-2p (to prevent variable confusion, we use p instead

of k) algorithm. Decompose the time domain index n and frequency domain index

k as follows:

n ¼ N

2
n0 þ . . . þ N

2p�1
np�1 þ np; n0; . . . ; np�1 ¼ 0; 1 np ¼ 0; 1; . . . ;

N

2p

k ¼ k0 þ . . . þ 2p�1kp�1 þ 2pkp; k0; . . . ; kp�1 ¼ 0; 1 kp ¼ 0; 1; . . . ;
N

2p

8>><
>>:

: ð1Þ

By substituting the n and k expressed in (1) into Wkn
N , we get the expression of

radix-2p butterfly unit as follows:

Wkn
N ¼ ð�1Þn0k0ð�jÞn1k0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

stage 1

� ð�1Þn1k1Wn2k0
8 ð�jÞn2k1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

stage 2

� ð�1Þn2k2Wn3k0
16 Wn3k1

8 ð�jÞn3k2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
stage 3

� � � ð�1Þnp�2kp�2Wnp�1k0
2p � � �Wnp�1kp�3

8 ð�jÞnp�1kp�2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
stage p�1

ð2Þ

� ð�1Þnp�1kp�1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
stage p

�Wnpðk0þ2k1þ���þ2p�1kp�1Þ
N|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Twiddle factors

�Wnpkp
N=2p :

The ð�1Þnp�1kp�1 in stage p indicates the simple radix-2 butterfly unit. The

twiddle factor expression shows that the twiddle factor generation address k0 þ
2k1 þ � � � þ 2p�1kp�1 is a simple bit-reverse pattern. For a 32768-point FFT, we

Table I. FFT sizes of some typical SAR imaging modes with different
parameters

Imaging
mode

Resolution
(m)

PRF Nr Na Nr zp Na zp

TOPS 15 4500 2875 1600 4096 2048
Scan 5 1316 31245 5700 32768 8192
Stripmap 3 9000 5511 10000 8192 16384
Spotlight 1 4500 14846 29900 16384 32768
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adopt the radix-25 algorithm. Only three cascading radix-25 processing elements

(PE) and two twiddle factor multiplications are required. The constant factors

include: Wn2k0
8 , Wn3k0

16 Wn3k1
8 and Wn4k0

32 Wn4k1
16 Wn4k2

8 .

3 Proposed architecture

3.1 Configurable constant factor multiplier (CCFM)

In order to design a CCFM, we summarize the following three rules:

a) Simplify the number of constant factors according to the trigonometric

function relationship;

b) Reduce the number of adders to less than or equal to one half of the

processing word length by combining both CSD and two’s complement represen-

tations of constant factors;

c) Reuse the shift registers.

Table II presents the value of the constant factors in radix-25 algorithm. We

can observe that only four cosine values and three sinusoidal values are required to

express the seven complex constant factors. Constant factors (i)∼(iv) are directly

generated with the cosine and sinusoidal values. The other factors are generated by

swapping the real and imaginary parts.

Table III shows the 16-bit CSD and two’s complement representations of the

essential trigonometric function values. We adopt the CSD representation for the

cosine values to decrease the number of adders occupied. We prefer a combination

of CSD and two’s complement representations for the sinusoidal values to reuse the

shift register as much as possible. The code �1 stands for −1. According to the

representations discussed above, the architecture of CCFM is presented in Fig. 1.

Fig. 1a is the cosine value generation block which occupies 5 adders/sub-

tractors, 6 multiplexers and 8 shift registers. Fig. 1b is the sinusoidal value

generation block which occupies 4 adders/subtractors, 4 multiplexers and 7 shift

registers. With corresponding control signals, it can be configured to generate any

constant factor required for the radix-25 algorithm. In addition, we reserve the

direct paths in both Fig. 1a and Fig. 1b for the requirement of variable-length FFT

architecture.

Table IV shows the circuit area of different CSD multipliers and CCFM. The

areas of multipliers for implementing factors (v)∼(vii) are same to those for factors

(ii)∼(iv) respectively. One radix-25 PE has five BF units, as shown in Fig. 2. From

Table II. Real part and imaginary part of the complex constant factors
in radix-25 algorithm

Complex factors Real part Imaginary part

(i) W1
8 cosð�=4Þ sinð�=4Þ ¼ cosð�=4Þ

(ii) W1
8W

1
16 cosð3�=8Þ ¼ sinð�=8Þ sinð3�=8Þ ¼ cosð�=8Þ

(iii) W1
8W

1
32 cosð5�=16Þ ¼ sinð3�=16Þ sinð5�=16Þ ¼ cosð3�=16Þ

(iv) W1
8W

1
16W

1
32 cosð7�=16Þ ¼ sinð�=16Þ sinð7�=16Þ ¼ cosð�=16Þ

(v) W1
16 cosð�=8Þ sinð�=8Þ

(vi) W1
16W

1
32 cosð3�=16Þ sinð3�=16Þ

(vii) W1
32 cosð�=16Þ sinð�=16Þ
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(2) we note that there is no multiplication after BF_I and only constant factor (i)

multiplication is needed after BF_II. Applying CCFM to these two BF units is not

area efficient. However, the multiplication after BF_III needs factors (i)∼(iii)
(9328.2 µm2), 22% of the circuit area is saved by applying CCFM (7316.2 µm2).

The multiplication after BF_IV needs factors (i)∼(vii) (24032.4 µm2), 70% of the

circuit area is saved by CCFM.

3.2 Look-up table (LUT) division technique

For the twiddle factor generation after PE1 which is shown in Fig. 2 as TFG1, the

depth of the ROM is 32768 when adopting an LUT-based twiddle factor generation

Table III. 16-bit CSD/two’s complement representations of the cosine
and sinusoidal values

Cosine CSD representation Sinusoidal CSD/two’s complement

cosð�=4Þ 1:0�10,�1010,1000,0010 - -
cosð�=8Þ 1.000,�10�10,0100,0010 sinð�=8Þ 0:10�1,0001,0000,1100
cosð�=16Þ 1.000,00�10,�1000,1010 sinð�=16Þ 0.001,1001,0000,1000
cosð3�=16Þ 1:0�10,1010,100�1,0000 sinð3�=16Þ 0.100,100�1,0010,0�100

Fig. 1. Architecture of the proposed 16-bit CCFM
1a Cosine value generation block
1b Sinusoidal value generation block

Table IV. Circuit area of different CSD multipliers and CCFM

CSD constant multiplier W1
8 W1

8W
1
16 W1

8W
1
32 W1

8W
1
16W

1
32 CCFM

Area (µm2) 2966.4 3180.9 4427.5 2924.6 7316.2

Fig. 2. Architecture of the proposed 32768-point FFT processor based
on CCFM and memory reallocation (MR), working mode:
16384-point FFT
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scheme. In many works, leveraging the symmetry of twiddle factors, only one

quarter as much ROM space is occupied. Therefore, an 8192-depth ROM with

necessary control logic is a commonly used optimized scheme. We adopt a LUT

division technique [10] according to the equation as follows:

Wn
32768 ¼ W256aþb

32768 ¼ Wa
256 �Wb

256�128 ða ¼ 0; 1; . . . ; 63; b ¼ 0; 1; . . . ; 127Þ: ð3Þ
Obviously, the 32768-depth ROM is divided into two small ROMs with an

additional processing overhead of one complex multiplier. Further, the symmetry of

the twiddle factors is still applicable toWa
256. Thus, the 256-depth ROM can also be

replaced by a 64-depth ROM with corresponding address control logic. As a result,

the demand for storage is reduced to a 192 (¼ 64 þ 128)-depth LUT. It shows great

advantages over the optimized scheme discussed above which occupies 8192-depth

ROM.

For the twiddle factor generation after PE2 which is shown in Fig. 2 as TFG2, a

1024-depth ROM can be substituted by two 32-depth ROMs and necessary control

logic, as shown in (4). Applying the symmetry of the twiddle factors is not cost-

efficient for Wa
32 due to depth of LUT.

Wn
1024 ¼ W25aþb

1024 ¼ Wa
32 �Wb

1024 ða; b ¼ 0; 1; . . . ; 31Þ: ð4Þ
On the other side, the LUT division technique is also suitable for the variable-

length FFT architecture. Taking the 16384-point case as an example, (5) shows the

simple principle of generating the twiddle factors with the existing LUTs. With

almost no additional control logic, the compatibility of the variable-length archi-

tecture is achieved.

Wn
16384 ¼ Wa

256 �Wb
16384 ¼ Wa

256 �W2b
32768 ða ¼ 0; 1; . . . ; 63; b ¼ 0; 1; . . . ; 63Þ: ð5Þ

Table V presents the result of the three twiddle factor generation schemes

mentioned above. Adopting LUT division technique in TFG1, we need two 24-bit

ROMs, one is 64-depth and the other is 128-depth. The 16-bit twiddle factors are

generated by these two 12-bit ROMs and multiplications. The error caused by this

Table V. Result comparison of different twiddle factor generation
schemes

LUT
Area
(µm2)

LUT+
symmetry

Area
(µm2)

LUT division
Area
(µm2)

64 � 24-bit ROM,
128 � 24-bit

8192 � 32-bit
ROM,

TFG1
32768 � 32-bit

224037.3 ROM,
62429.4 12-bit real 20209.4

ROM
control logic

(0.28) multiplier�3, (0.09)
16-bit real
adder�5,

control logic

32 � 24-bit
ROM�2,

1024 � 32-bit
256 � 32-bit

12770.8
12-bit real

7654.4
TFG2

ROM
19156.3 ROM,

(0.67)
multiplier�3,

(0.40)
control logic 16-bit real

adder�5,
control logic
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way is about 10�4 compared with direct LUT approach, which is acceptable. A

complex multiplier implemented by three 12-bit real multipliers and five 16-bit real

adders is also adopted, which can further save circuit area compared with the

traditional four real multipliers scheme.

Process of twiddle factors generation in TFG2 is similar to that in TFG1. The

circuit area can be significantly decreased by applying LUT division technique.

Specifically, 91% of the area is saved in TFG1 and 60% in TFG2 compared with

direct LUT approach. Even compared with the one quarter symmetric LUT

approach, 67% of the area is saved in TFG1 and 40% in TFG2.

3.3 Memory reallocation (MR) technique

A huge challenge for fixed-point FFT processor design is the problem of finite

word-length effect. According to the basic rules of fixed-point operations, if the

carry bit is reserved after an addition, no quantization noise will be introduced into

the fixed-point processing system. However, longer processing word length means

more memory occupations for a pipeline FFT processor. Taking a 1024-point FFT

with 12-bit input as an example, there are two common word-length configuration

modes. Mode 1 customizes 12-bit during the whole processing. The SQNR

decreases due to the quantization noise. Mode 2 expands 1 bit after every BF unit

(input 12-bit and output 21-bit). About 8.1% of extra memories will be occupied.

The SQNR remains much higher. However, as the FFT size becomes larger, the

increase in memory will be untenable.

We adopt an MR technique to solve the above issue. When processing the

non-maximum size FFT, the first BF unit (BF_I) in PE1 and the corresponding

feedback RAM are in idle state. Thus we divide this 16384-depth RAM into a RAM

group. The RAM group consists of ten smaller RAMs. 8192-depth, 4096-depth,

2048-depth and 1024-depth RAMs are reallocated to the first PE (PE1), 512-depth,

256-depth, 128-depth, 64-depth and one of two 32-depth RAMs are reallocated to

the second PE (PE2). Still taking 16384-point FFT as an example, the four RAMs

reallocated to PE1 and the five RAMs reallocated to PE2 will be assigned to the four

BF units in PE1 and the five BF units in PE2 respectively. Thus, the feedback RAMs

of the BF units are enlarged. Through the bit-width extension of the feedback

RAMs, the calculation results of larger word-length can be stored. The reservation of

larger processing word lengths can improve the precision of the whole FFT process-

ing. Fig. 2 shows the memory reallocating process.

The word lengths of the BF units in PE1 and PE2 are customized as shown in

Fig. 2, which increase 1 bit after every BF unit (from 16-bit to 24-bit). Word

lengths of the BF units in PE3 are all customized 24-bit. Owing to the very small

depth of RAMs in PE3 (maximum depth is 16), 24-bit processing word length in

PE3 causes little resource occupation increase compared with 16-bit.

Therefore, when performing 32768-point FFT, the input word length is 16 bit.

The internal processing word lengths of PE1 and PE2 are all 16-bit, limited by

the capacity of RAMs. The output word length is 24 bit. When performing non-

32768-point FFT, the output of PE2 is expanded to 24-bit based on the memory

reallocation technique. The word-length schemes of different FFT sizes are detailed

in Table VI.
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We compare the circuit area of real adders and memories applying MR

technique with non-MR technique. The result is shown in Table VII. The extra

circuit area of adders is about 35% and that of memories is about 1.6%. The total

extra overhead of MR scheme is no more than 1.75%. The significant increase of

calculation accuracy resulted from MR scheme will be presented in section IV.

Although the adders with a larger word length may occupy more circuit area, taking

into account that the circuit area of an adder is not very sensitive to the word length

and that the reallocation scheme results in processing precision improvement, this

trade-off is cost-effective. Therefore, MR technique achieves high-precision (meas-

ured by SQNRs) with lower overhead of circuit area.

Table VI. Word-length schemes under different FFT sizes with the
memory reallocation technique

FFT Word-length Scheme

Size PE1 and PE2 PE3

32768 16 16 16 16 16 16 16 16 16 16 24

16384 17 18 19 20 21 22 23 24 24 24

8192 18 19 20 21 22 23 24 24 24

4096 19 20 21 22 23 24 24 24

2048 20 21 22 23 24 24 24

Table VII. Area comparison of the real adders and memories under
different schemes

Real adders
Area

Memories (RAMs)�

Scheme Bit
Amount (µm2)

Bit
Depth Amount

Area (µm2)
width width

16384 1

8192 1

4096 1

No MR 16-bit 30 9518.4 32
1024 1

2985222.4
2048 1

512 1

256 1

128 1

16-bit 2 8192 2

17-bit 2 4096 2

18-bit 2 2048 2

19-bit 2 1024 2

With MR 20-bit 2 12894.4 32 512 2 3033411.2

21-bit 2 256 2

22-bit 2 128 2

23-bit 2 control
/

24-bit 14 logic
�The RAMs with the depth less than 128 are implemented with distributed logic.
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3.4 Configurable processing elements (PE)

To achieve the variable-length architecture of FFT (from 2K to 32K), six multi-

plexers are inserted to the radix-25 processing element as shown in Fig. 3. The

maximum 32K-point FFT is implemented without any bypass. When the FFT size

varies, the number of BF units occupied and the distribution of constant twiddle

factors should change accordingly. The data stream is controlled by the six multi-

plexers. The constant factors corresponding to different FFT size are generated by

the CCFM. Thus, 2K, 4K, 8K and 16K-point FFT are realized.

Finally, the proposed 32768-point variable-length FFT processor is imple-

mented by cascading configurable processing elements (PE1, PE2 and PE3) and

LUT-division-based twiddle factor generation blocks discussed above (TFG1 and

TFG2).

4 Result and comparison

Limited by the lack of literatures on large-point FFT implementation, we replicate

several conventional radix-2k SDF FFT processors under 65 nm CMOS technology.

For fairly comparison, the input word lengths is set 16 bit and the output word

length is set 24 bit. The internal word length scheme is same as the 32768-case

shown in Table VI. The word length of the twiddle factors is also set 16-bit. The

one quarter LUT-based method is adopted for the twiddle factor generation.

Table VIII shows pre-layout area comparison result. The circuit area is reduced

by at least 13%. The SQNR performance in the case of 32768-point is better than

others because there are less twiddle factor multiplications in the radix-25 algo-

rithm. When performing non-32768-point FFT the proposed fixed-point FFT

achieves an SQNR improvement of at least 18 dB.

Fig. 3. Configurable processing element (PE) of the variable-length
FFT.

Table VIII. Result comparison with several conventional 16-bit
32768-point variable-length fixed-point pipeline FFT
processors.

Area SQNR (dB) (test input: white Gauss noise)
(mm2) 32768 16384 8192 4096 2048

R2SDF 20.6 46.5 49.9 53.1 54.4 58.1
R22SDF 17.5 49.7 53.2 56.3 58.4 62.8
R23SDF 16.1 50.8 54.2 57.2 59.5 64.3
Proposed 14.0 51.5 79.2 80.5 81.9 82.4© IEICE 2018
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5 Conclusion

This paper proposes a 32768-point variable-length pipeline FFT processor. With the

CCFM, LUT division and memory reallocation techniques, the circuit area is

reduced and the fixed-point SQNR performance is improved. The design method-

ology can be expanded to higher radix-2k processor implementations.
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