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Abstract: As a new approach to finding integer motion vectors in SCC,

hash-based searches have been proposed recently. In the paper we propose an

improved search algorithm for integer motion estimation (IME) that employs

hash-based search only for 8 × 8 coding units (CUs) and bottom-up search

for larger CUs. Furthermore, it updates the hash function and hash table for

each CTU to improve coding efficiency and reduce search complexity.

According to simulation results, the proposed algorithm provides similar

or better coding performance for screen contents while keeping the complex-

ity at a lower level and constant compared with the reference algorithms.
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1 Introduction

Integer motion estimation (IME) is the most essential coding tool for inter

prediction to achieve high compression performance in High Efficiency Video

Coding (HEVC) [1]. The test zone search (TZS) algorithm [2] adopted in the HM

reference software as the search algorithm for IME adaptively employs basically

several diamond search rounds and a raster search, if necessary. Although it is

suitable for finding small motions, the TZS algorithm has a limitation in finding

large motions and not effective for screen contents with repeating patterns, sharp

edges and long scroll motions.

Recently, hash-based searches have been proposed for IMEs on screen content

[3, 4, 5], where the best-matching block is searched only among reference blocks

whose hash key is equal to that of the current prediction unit (PU). It is crucial to find

a hash function suitable for maintaining search quality and reducing search complex-

ity. A hash-based IME search algorithm [3] that adopts a hash function based on

product-quantization is used to find intra block copy mode of 8 � 8 PUs for screen

content coding. Another hash-based search [4] that employs a random hash function

based on cyclic redundancy code is used only for inter prediction mode of all

2N � 2N PUs, while other PUs are searched with the TZS algorithm. The hash-based

search in [5] employs a hash function utilizing both CRC and quantization code.

All of the above can give better coding performance for screen contents, but

they have two problems. First, they use fixed hash functions that do not change

according to the video contents, although the search complexity is very sensitive to

the content of the input sequence. Second, their search algorithms are inefficient

because all reference blocks are searched in a reference picture, but most of the best

matching-blocks are located near to the current PU.

In this paper, we propose a new hash-based IME search algorithm that

addresses these two issues. First, the proposed algorithm selectively changes hash

functions in the CTU level to keep the search complexity constant. To generate

CTU-level hash functions, we employ two methods to reduce the search complexity

in finding hash functions: finding a hash function based on product quantization

(PQ) [6] and reusing, if necessary, the hash function for the previous CTU with

similar statistics. To improve the coding efficiency, secondly, we generate hash keys

for all 4 � 4 block within each PU and use all blocks whose hash keys are equal to

any of one of these hash keys in the IME process as search candidate.

The rest of this paper is organized as follows. In Section 2, we briefly describe

a typical hash-based search algorithm. Then a new hash-based search algorithm is

proposed in Section 3, focusing on its computational complexity control. We

describe a method to adaptively find a hash function for each CTU in Section 4.

The IME algorithm using hash-based search is proposed in details in Section 5 and

experimental results are presented in Section 6, which is followed by the con-

clusion in Section 7.
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2 Hash-based search scheme

Integer motion estimation (IME) is a complex and essential algorithm for searching

blocks that can compress the current PU, PUcur, most efficiently in video coding.

A hash-based search algorithm uses all blocks whose hash key are equal to that

of the PUcur. Thus, reprocessing for calculating hash keys for all PUs in the

reference pictures is performed in advance in order to utilize a hash-based search

algorithm.

Fig. 1 shows a typical hash-based search scheme, which consists of two steps:

generating hash tables in the preprocessing step and evaluating search candidates

in the IME search step. First, the hash key, keyref , of all blocks within reference

pictures are calculated for a pre-selected hash function before encoding each

picture. After then, by classifying the reference blocks according to their hash

keys, hash tables are generated. And its location information is stored into a bucket

identified with its hash key in a hash table. Thus, each bucket in the hash table is

implemented a set of singly-linked lists, which includes all reference blocks with

the same hash key.

In IME search step, a hash key for the current PU, keycur, is first calculated

with the same hash function used for the hash table generation. Then the bucket

identified with the hash key is fetched from the hash table and all blocks in the

bucket corresponds to search candidates for finding the best matching block, PUbest,

which is a block with the minimum rate distortion cost [2].

3 Proposed hash-based search algorithm

Problem formulation: The computational complexity of real-time video encoders

should be limited to be within a fixed level. Assuming that Ctarget is the target upper

bound of the search complexity for IME, our goal is to maximize the coding gain

while satisfying the complexity constraint with a hash-based search algorithm.

The total computational complexity Ctotal of the hash-based search algorithm

for a CTU includes three components like the following.

Ck
total ¼ Ck

search þ Ck
buildHT þ Ck

findHF; ð1Þ
where Csearch, CbuildHT and CfindHF represent the computational complexity for IME

search of all possible sized PUs, for building a hash table, and for finding a hash

function, respectively for each CTU. Here Ck represents the average complexity for

a CTU in the k-th picture. In this paper, the subscripts k, and j are used to represent

the indices of picture and CTUs in a picture, which can be omitted, if possible,

Fig. 1. A typical hash-based search algorithm
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without confusion. Csearch can be measured as the number of block-matching for

IME of all PUs in a CTU, NBM, as follows.

Csearch ¼
X

PUi2CTU
CBM � Si � NBM; ð2Þ

where CBM is the computational complexity of block-matching for one block and Si
is a scaling factor of the computational complexity for a PU relative to that for an

8 � 8 PU considering the various-sized PUs in a CTU. For example, Si for a

16 � 16 PU is equal to 4.

Assuming that B, NHT, Nhash-key, and Ntotal represent the bit length of hash keys,

the number of hash tables used for IME search, the number of hash keys used for

IME search per a PU, and the total number of 4 � 4 blocks stored in the hash table,

respectively, the expectation value of the number of 4 � 4 blocks explored to find

the best matching block, NBM, can be calculated as follows.

NBM ¼ NHT � Nhash-key �
X2B�1
z=0

Ntotal � prðzÞ � pcðzÞ
 !

; ð3Þ

where pr(z) is the probability for keyref being equal to z, and pc(z) is the probability

for keycur being equal to z.

The computational complexity for building a hash table, CbuildHT, is propor-

tional to the number of blocks in hash tables as follows.

CbuildHT ¼ Chashing � Ntotal; ð4Þ
where Chashing is the computational complexity of generating a hash key for one

block and inserting it into hash tables, which depends on the hash function.

Lastly, CfindHF depends on the algorithm that adaptively determines a hash

function which will be explained in Section 4.

Proposed approach: To alleviate the problems described in Section 1, we propose

a new hash-based search algorithm with three steps: 1) finding hash functions to

generate hash tables for the current picture, 2) building hash tables for the current

pictures to be referenced by the following pictures and 3) performing IME search

for the current picture, as shown in Fig. 2, where the additional blocks to a typical

hash-based search are represented as shaded-boxes.

First, the proposed algorithm finds hash functions for each CTU while keeping

Ctotal less than and close to Ctarget. In estimating Ctotal, we assume that Csearch,

CbuildHT and CfindHF for the current picture are replaced with those for its immedi-

ately previous picture in the same temporal layer or their adjusted values according

to the bit length of the hash key B and a threshold value that determines whether to

find a hash function through data learning or to reuse the hash function. We will

discuss it more in the Section 4.

After determining the hash function for the current CTU, a hash table is

generated for the current CTU. For example, a hash key for each 4 � 4 block in

the CTUjk is generated with its hash functions hjk and is stored into a corresponding

bucket in the CTU-level hash table HTjk. Therefore, all 4 � 4 blocks in the same

CTU are mapped into the same hash table. Note that not all possible hash keys are

generated and the distribution of hash keys depends on the video contents. Through

experiments, we found that only about 30–50% of all possible hash keys actually
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are generated. If all pixels in a block are the same, they will not be stored in the

hash table because they can be coded using other prediction modes of the HEVC.

Experimental results show that it can reduce IME search complexity by approx-

imately 50–70% with negligible coding loss (0.01∼0.02%).

For the IME search algorithm referencing CTU-level hash tables, its hash

function and hash table for each CTU must be stored together into data buffers

considering the reference by the following pictures. The size of the buffer needs to

be equal to the product of the number of CTU in a picture, NCTU, and the number of

the decoded picture buffer (DPB), NDPB. Furthermore, they should be kept until the

reference pictures used for building a hash table are removed from the DPB.

In the IME search step, the best-matching block is searched among all search

candidates through block matching. To efficiently reduce IME search complexity,

two methods are employed here. First, we employ the bottom-up MVPs (BMVPs)

[7] for PUs of size larger than 8 � 8. Note that when the depth of the current PU is

d in the BMVP algorithm, its MVP candidates consists of the best motion vectors

of its corresponding PUs with depth of d þ 1. Second, we employ hash-based

search only for PUs of size 4 � 8, 8 � 4, and 8 � 8 where search candidates consist

of all blocks with a hash key equal to any of one of 4 � 4 blocks in the current PU.

Consequently, we can divide the complexity of hash-based IME search Csearch

into two terms such as Cbottom-up for find the BMVPs and Chash-search for finding the

best matching block among blocks with the same hash key in the hash table, which

is represented as follows.

Csearch ¼ Chash-search þ Cbottom-up ð5Þ

4 Searching an optimal hash function for each CTU

Hash function: In this paper we focus on using product quantization [6] in

determining hash functions suitable for IME search. The hash functions based on

PQ have a form of the Cartesian product of multiple quantized feature components,

each of which can be quantized independently to minimize its expected distortion.

Assuming that X is a 4 � 4 block, the input of the hash function h is m tuple

(f1ðXÞ; . . . ; fmðXÞ), each of which is a feature-value for m-th feature calculated from

the block. And the output of the hash function h is m tuple (q1ðf1ðXÞÞ; . . . ;

Fig. 2. Flowchart of the proposed hash-based search algorithm
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qmðfmðXÞÞ), each of which is a quantized value of the feature-value. Thus, it can be

written as follows.

ðq1ðf1ðXÞÞ; . . . ; qmðfmðXÞÞÞ ¼ hðf1ðXÞ; . . . ; fmðXÞÞ; ð6Þ
where m features are selected in a predefined feature set. Features included in the

feature set used for experiments in this paper are summarized in Table I.

How to determine the parameter of the hash function: Csearch is the sum of

Chash-search and Cbotton-up as shown in Eq. (5). Even though the number of BMVPs to

be used in the IME process can be slightly changed according to the input content,

it does not really make any significant difference in Cbotton-up. Thus it is assumed to

be approximately the same as the previous pictures of the same temporal layer for

simplicity. As a result, any change of Csearch due to the input content is mostly from

that of Chash-search.

In the Eq. (3) for Chash-search, NHT, Nhash-key and pr(z) are values that can be

obtained at the time of determining the parameter of the hash function for the

current CTU. Because NHT is determined from the number of CTUs in the IME

search area which is generally fixed. As Nhash-key is equal to the number of 4 � 4

blocks in a PU, Nhash-key is fixed to 4 for 8 � 8 PUs and 2 for 8 � 4 or 4 � 8 PUs.

And the distribution for pr(z) can be calculated from the hash table generated in the

previous pictures.

On the other hand, Ntotal and pc(z) are not. Especially, pc(z) can’t be determined

until all hash-based IME searches are completed for the current CTU. To determine

the Chash-search, we just assume that the image change between two consecutive

pictures is not large. Consequently, Ntotal and pc(z) can be approximated as the

average value of Ntotal and pr(z) of previous pictures, respectively. Based on these

assumption, the Chase-search can be approximated as follows.

Chash-search �
X

PUi2CTU
S�i �

X2B�1
z¼0

prðzÞ2
 !

¼
X

PUi2CTU
S�i � F ¼ �est � F; ð7Þ

where S�i is a kind of constant corresponding to the product of CBM, Si, NHT,

Nhash-key and Ntotal. For the convenience, the sum of squares of pr(z) in Eq. (7) is

represented with F, a complexity factor, which can be interpreted as a measure of the

hash-based search complexity for a hash key distribution. Note that the complexity

of the hash-based search is proportional to F, which is the smallest if the distribution

Table I. Features included in the feature set

features descriptions equations

DC Average value of luminance pixels
1

W � H �
XW
x¼0

XH
y¼0

pcurðx; yÞ

SATD Sum of absolute transformed differences H � ðP-DCÞ � HT
�� ��

ACTx Horizontal activity
1

ðW � 1Þ � H �
XW-1

x¼0

XH
y¼0

pðx þ 1; yÞ � pðx; yÞ�� ��
ACTy Vertical activity

1

W � ðH � 1Þ �
XW
x¼0

XH-1
y¼0

pðx; y þ 1Þ � pðx; yÞ�� ��
Gx Average horizontal edges

3 � 3 Sobel filter
Gy Average vertical edges
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of hash keys is uniform. The complexity factor of the hash-based search F can be

determined from several combinations of B and how to make a hash function.

Among them, we choose a B and a hash function that minimizes the difference of

Ctarget and the expectation of Ctotal. The hash function is determined based on PQ.

Then, assuming that CfindNC, Niteration and Bd are the computational complexity

of finding the nearest centroid to the feature-value of the block when a block is

inputted, the number of iteration of the k-means clustering algorithm [6] and the bit

length of hash key of the d-th feature, the search complexity to find a hash function

based on PQ, CfindHF, is as follows.

CfindHF ¼
Xm
d¼1

CfindNC � Ntotal � Niteration � 2Bd ; ð8Þ

where the sum of Bd for m features is equal to B. In the Eq. (8), Niteration is assumed

to be equal to that of the average of the previous picture, for simplicity. As a result,

the CfindHF depends on only B and can be estimated as follows.

Ck
findHF �

Xm
d¼1

2B
k-1

d

�Xm
d¼1

2B
k
d

 !
� Ck-1

findHF ¼ �est � Ck-1
findHF; ð9Þ

where Bk-1
d and Bk

d are the bit length of hash key of the d-th feature for (k-1)-th

and k-th pictures in the same temporal layer, respectively.

On the other hand, Cbotton-up and CbuildHT does not depends on B. Consequently,

Ctotal can be estimated with the Eq. (7) and (9) as follows.

Ck
total � �est � Ck-1

hash-search þ �est � Ck-1
findHF þ Ck-1

bottom-up þ Ck-1
buildHT; ð10Þ

where the �est and �est are determined from the average of �real and �real the

previous 3 pictures, respectively. The �real and �real are values calculated from the

real search complexity from obtained after encoding a picture. And B and m are

initially set to 12 and 3, respectively, and Bd is equally assigned for 3 features.

Fig. 3 shows the average number of search points for an 8 � 8 PU in TZS and

hash-based IME search (HBS) picture by picture, where the bit length of hash key

of the k-th picture means that used hash functions of the k-th picture. This shows

that by adjusting B the search complexity of a hash-based IME search can be kept

almost constant. And it is still working well even the scene-change point where the

average number of search candidates for the TZS algorithm reduces drastically. For

the experiment, we set the number of search points for 8 � 8 PUs in the hash-based

(a) Kimono sequence at QP22 (b) sc_map sequence at QP22

Fig. 3. The average number of search points for an 8 � 8 PU in TZS
and HBS
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search to a fixed 100. Thus, the average of search points of HBS may be larger than

that of TZS in scenes where there is little change in the input image.

How to find a hash function: Fig. 4 shows a simplified flowchart of the algorithm

to find a hash function suitable for each CTU, which consists of two paths: reusing

and finding hash functions. To reduce the computational complexity for finding

hash function, first it determines in the reusing step whether or not one of hash

functions for the previous coded CTUs is used for a hash function of the current

CTU, CTUcur. Otherwise, it tries to find a new hash function that minimizes

similarity distortion.

We employ a heuristic that there exists a positive linear correlation between the

similarity of two CTUs and the similarity of their hash functions to reduce the

computational complexity CfindHF. Therefore, we first find the CTU (CTUMS) most

similar to the CTUcur among the previous coded CTUs by using a similarity

measure between two CTUs and another similarity measure of their hash functions

which are defined as follows, respectively.

similarity ðCTU1;CTU2Þ ¼ j�1 � �2j þ j�1 � �2j ð11Þ
similarity ðh1; h2Þ ¼ jF1 � F2j; ð12Þ

where �jk and �jk are the mean and the standard deviation of DC of blocks in the

CTUjk, respectively, and Fjk is a complexity factor of the distribution of hash keys

for CTUjk with its corresponding hash function hjk.

After finding CTUMS, its hash function hMS is selected as the initial hash function

of the CTUjk, hijk. The complexity factor Fijk is calculated from the distribution of

hash keys, which are generated from sampled blocks in CTUcur with the hash

function hijk to further reduce CfindHF. Experiments show that it does not degrade

in performance if the sampling ratio is larger than 1/8. If Fijk is close to FMS, hijk is

used as the hash function of CTUcur, hjk. Otherwise, the finding step is performed.

It is practically impossible to find the optimal set of important features for hash

keys at runtime because there exist too many search candidates and the coding

performance and quality for each search must be evaluated through encoding. Thus,

we decided to determine the number of features off-line just to reduce the search

complexity of hash functions at runtime. As summarized in Fig. 5, when the target

Fig. 4. A simplified flowchart for finding a hash function suitable for
each CTU.
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complexity is set to 100, 200, 300, 500 and 1000, and the number of features are 2,

3, and 4, the total complexity and the coding performance are compared after

encoding the first 32 frames of all the sequences in Table II Through this experi-

ment, we found that the number of features m depends on the Ctarget. If the Ctarget

is roughly less than 400K�CBM, it is appropriate to set it to 3, otherwise 2.

Consequently, the number of features is limited to be 3, based on the assumption

than Ctarget is less than 400K�CBM.

At runtime, the hash function is adaptively determined through three processes

such as feature selection, bit allocation, and k-means clustering based on PQ. In the

feature selection, one feature with the greatest variance is first chosen from the pre-

selected feature set to distinguish blocks in the current CTU. Then features with

smaller correlation with already selected features are chosen to have a set of

selected features with more expressive power. In the bit allocation, the bit-length

for each feature are determined in order of the variances based on the greedy

algorithm. Finally, a hash function is determined through the k-means clustering

algorithm based on PQ, which minimizes the sum of the difference between

feature-values and its nearest centroids as follow.

minimize
Xm
d¼1

XNtotal

e¼1
jfdðXeÞ � CðqðfdðXeÞÞÞj

 !
; ð13Þ

where X, f(X), q(f(X)) and C(q(f(X))) are a 4 � 4 input block, a feature-value of X,

a quantized value of f(X) and the nearest centroid of f(X), respectively.

After finding a hash function, the complexity factor FO is calculated. Mostly,

the FO is smaller than Fi, but it is not always true. Thus, in case of FO > Fi, the hash

function hi is chosen finally.

Both CfindHF and Chash-search are dependent on the threshold value Th to

determine the ratio for reusing hash functions. Let’s assumed that pfinding is the

number of CTU of performing the finding step divided by the total number of CTU.

As pfinding increases, CfindHF is increased but Chash-search is mostly decreased because

FO is on the average smaller than Fi. Therefore, it is necessary to find the optimal

threshold that minimizes Ctotal.

According to the experiment results, there are two cases. In the first case, Ctotal

is minimized when the threshold is 0 as shown in Fig. 6(a), which is mainly

Fig. 5. The total complexity and the coding performance when the
target complexity is set to 100, 200, 300, 500 and 1000 for three
different number of features.
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occurred when the bit length of the hash key is short and F is large. This is because

CfindHF is much smaller than Chash-search so that there is not much room for further

reduction of the CfindHF. In the second case, there is a minimum value of Ctotal at a

threshold value other than zero as shown in Fig. 6(b). Note that the first case occurs

if CfindHF is smaller than Chash-search when the threshold is 0, otherwise the second

case. In the second case the minimum of Ctotal occurs when the threshold value is

between 0.02 and 0.05, and the variation of Ctotal in the range is not large. Based on

these observations, the threshold of the k-th picture is determined as follows.

Thk ¼ 0 if Ck-1
findHFðTh=0Þ < Ck-1

hash-searchðTh=0Þ
0:03 otherwise

�
; ð14Þ

where Ck-1
findHFðTh¼0Þ and Ck-1

hash-searchðTh¼0Þ are the average value of CfindHF and

Chash-search of the (k-1)-th picture when the threshold is 0. But thresholds used for all

CTUs of the (k-1)-th picture are not always equal to 0, thus they are not available.

In this case, Ck-1
findHFðTh¼0Þ and Ck-1

hash-searchðTh¼0Þ are estimated by assuming that

the complexity of the reusing step is zero as follows, respectively.

Ck-1
findHFðTh¼0Þ � Ck-1

findHF=p
k-1
finding; Ck-1

hash-searchðTh¼0Þ � Ck-1
hash-search ð15Þ

In Eq. (14), we selected the fixed threshold to 0.03, based on the observations

because there is no large difference in the value of Ctotal according to the variation

of Th, which can be negligible compared to the estimation error of the complexity

of the current picture with the complexity of the previous picture.

5 Proposed hash-based integer motion estimation

Fig. 7 shows the pseudo code for the proposed hash based IME of each PU, which

are consisted of 2 stages: hash-table selection stage and hash-based search. The

hash-table selection stage is performed before hash-based search. At first, we select

a CTU with the smallest lower bound of the CTU-level RD cost which can be

calculated by finding the motion vector of block with the shortest distance to

AMVP among all PUs in the CTUjk, assuming that distortion is zero. If CTUjk is

included in the IME search range and if its lower bound of the RD cost is smaller

than the current minimum RD cost, CTUmin, its corresponding hash table HTjk and

hash function hjk are fetched for block matching.

Secondly, hash-based search is performed where a hash key is generated for

each 4 � 4 subblock. A hash-key, keys is calculated with hjk for each 4 � 4

subblock in the current PU where s is the index of subblocks in the raster-scan

(a) (b)

Fig. 6. Ctotal, CfindHF and Chash-search by the threshold when (a) B ¼ 9

(b) B ¼ 15
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order in PUcur. The subblocks with hash key, keys in HTjk are included in the s-th

candidate list for PUcur. Denoting that the t-th subblock is taken from the s-th

candidate list and the position of the top-left pixel of the subblock is (xst; yst), the

position of the top-left pixel of the reference PU for block-matching, refPUst,

can be derived by aligning both the current PU and the reference PU at the s-th

subblock position corresponding to keys and is calculated as follows.

ðxst �modðs,2Þ � 4; yst � floorðs,2Þ � 4Þ; ð16Þ
where floor(s, 2) and mod(s, 2) are the quotient and remainder of dividing s by 2.

Note that it is possible that a referenced PU can be referenced again from

different candidate lists. To avoid duplication computation, it can be checked

whether the block is referenced before performing block matching. Experimental

results show that the number of bock matching can increase about 15 to 20%

without the duplication check. Note that if the distortion calculated between the

current PU and a reference PU is zero, the hash-based IME can be terminated

because a perfectly matching PU is already found. Otherwise, this process is

repeated until all reference PUs in the candidate-lists are searched and all reference

CTUs in the search area are referenced and all reference pictures are referenced.

6 Experimental results

The proposed IME search algorithm was integrated into HM-16.9+SCM8.0 [8].

And 12 video sequences for screen contest [9] listed up in Table II were used for

simulation tests. The coding performance is measured by the BD-rate [10], which is

obtained with the weighted average of the Y, U and V components of 6, 1 and 1 for

4 quantization parameter values: 22, 27, 32 and 37 under lowdelayB common test

condition. As an anchor for BD-rate calculation, the algorithm in [2] is used.

Table II shows comparison of total search complexity and BD-rate of reference

algorithms and our algorithm. The “Avg. Ctotal” means the average search complex-

ity of the full sequence. For comparison, [2], [4], [7] are used. They employ TZS,

TZS+HBS and TZS+bottom-up search (BTS) for IME, respectively. Note that the

search range for TZS and HBS are set to �64 and the full-range, respectively. The

total search complexity of [2] and [7] adopted TZS is considered IME search

Fig. 7. The pseudo code of the proposed hash-based IME for a PU
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complexity only. And the total search complexity of [4] is included the complexity

for IME search and building a hash table. On the other hand, ours combines HBS

and BTS for IME and the search range is set to �320. And the target complexity is

set to the level equivalent to the complexity of 120K�CBM, 150K�CBM and

200K�CBM, which are denoted as 120, 150 and 200 in the table, respectively.

However, when the target complexity is 120K�CBM and 200K�CBM, even though

the complexity is controlled, the total search complexity is not precisely controlled.

This is because the total search complexity of most sequences is ranging from 100

to 200. And, sc_map and sc_web_ browsing doesn’t change the total complexity

even though the target complexity is changed. Because, in that sequences, the IME

search is early terminated due to lots of perfectly matching blocks, thus there is not

much room to control search complexity. According to our experiment, the

proposed algorithm gives an additional coding gain of about 5∼8% relative to

[2] and [7]. It can reduce the overall search complexity to about half on average,

while keeping the coding efficiency similar to [4].

7 Conclusion

We have proposed a hash-based search for integer motion estimation in this paper.

The proposed method selectively changes hash functions in the CTU level to keep

the search complexity constant. To generate CTU-level hash functions, we employ

two methods: finding a hash function based on PQ and reusing the hash function for

the previous CTU. To improve the coding efficiency, we generate hash keys for all

4 � 4 block within each PU and use all blocks whose hash keys are equal to any of

one of these hash keys in the IME process as search candidate. Consequently, the

proposed algorithm provides similar or better coding performance for screen

contents while keeping the complexity at a lower level and constant compared

with the reference algorithms.

Table II. Comparison of total search complexity and BD-rate

Avg. Ctotal (K) BD-rate (%)

sequence name [2] [4] [7] 120 150 200 [4] [7] 120 150 200

sc_flyingGraphics 441 656 88 124 150 199 −0.92 0.35 1.91 1.04 −0.73
sc_desktop 97 102 19 120 150 185 −18.8 0.16 −15.6 −19.1 −19.3
sc_console 248 260 50 121 150 191 −19.6 0.23 −13.7 −18.7 −19.5

MissonControlClip3 90 148 18 120 150 182 −8.78 0.10 −8.83 −12.0 −12.3
sc_web_browsing 61 39 12 113 113 113 −31.0 0.10 −24.7 −31.8 −32.2

sc_map 30 51 6 120 123 123 −0.40 0.28 −0.43 −0.56 −0.59
sc_programming 82 186 16 118 150 175 −1.33 0.12 −0.94 −3.04 −3.21

SlideShow 304 325 61 124 150 195 −0.1 0.14 −0.91 −0.81 −0.79
sc_ robot 139 321 28 124 150 210 0.00 0.26 0.77 0.62 0.60

Basketball_Screen 225 289 45 122 150 191 −3.42 0.29 −3.18 −4.11 −4.15
MissionControlClip2 208 250 44 125 150 194 −5.63 0.20 −4.30 −7.94 −8.01

ChinaSpeed 545 780 104 130 150 203 −0.22 0.31 1.50 0.91 0.54

screen contents avg. 206 284 41 122 145 180 −7.52 0.21 −5.70 −7.96 −8.30
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