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Abstract: Side channel based hardware Trojan detection is one of the most

investigated schemes to ensure the trustworthiness of integrated circuits

(ICs). However, nearly all of the side-channel methods require a golden

chip reference, either a trusted fabricated circuit or layout, which is very

difficult to access in reality. In this paper, we propose a golden chip free

electromagnetic (EM) side channel simulation and statistical Trojan detection

framework. We utilize the design data at early stage of the IC lifecycle to

generate EM radiation, and the generated EM traces serve as the golden

reference. In order to leverage the EM signatures, a neural network algorithm

is utilized for Trojan detection. Experimental results on selected AES bench-

marks on FPGA show that the proposed method can effectively detect

Trojans with the presence of noise and variations.
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1 Introduction

Hardware Trojans (HTs) are malicious hardware modifications to ASICs, commer-

cial-off-the-shelf parts, micro-processors, micro-controllers, network processors,

digital-signal processors or IoTs. Most of the Trojans can be digitally triggered

and can be further divided into combinational and sequential types [1]. Typically,

sequential Trojans are usually related with main clocks or finite state machines of

the original circuit. To compromise the threats introduced by HTs, HT detection

approaches have been proposed at pre- and post-silicon stages of the whole

IC lifecycle. In the pre-silicon stage, the gate-level netlists are analyzed to find

abnormal or extra Trojan nets [2, 3, 4]. These pre-silicon Trojan detection

approaches provide a reliable guarantee for the trustworthiness of the circuits

before tape out. In the post-silicon stage, however, the side channel based methods

[5, 6, 7] are more flexible and easy to implement, where I/O ports and side-channel

parameters are utilized to find abnormal behaviors introduced by the Trojans. While

various HT detection approaches have been explored by many researchers, statisti-

cal side-channel analysis has been among the most heavily investigated ones [8].

However, most side-channel methods rely heavily on the existence of a trusted

golden chip or other profiles alike, such as golden layout. Absence of a reliable

fabricated golden chip or golden layout makes practical applications of side-

channel detection approaches unfeasible.

In this paper, we propose a golden chip free electromagnetic side-channel

simulation and statistical Trojan detection framework. In the EM modeling and

simulation process, only the genuine RTL design is required for generating the

circuit’s EM radiation. The simulated EM traces are transformed into frequency

domain to leverage the spectral features of the EM radiation exempt from the

influence of noise and variations. Finally, a pattern recognition shallow neural
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network is utilized to extract and learn the EM signatures, which are features of the

EM spectra for Trojan detection. The main contributions of this paper are as follows.

• A trusted EM model is established utilizing the RTL design data, and the

generated EM traces serve as the golden reference in Trojan detection;

• Optimization of the EM model is made towards physical implementations by

considering the actual executions of the circuit, and the simulated EM model

matches with actual measurements well;

• EM spectral features are extracted and learned by a neural network for Trojan

detection.

2 Background

We assume that the RTL design data is trusted, or if the design data is not trusted,

the trusted circuit’s functional simulation data is available, either without Trojans or

with Trojans dormant. We also assume the circuits have certain clock signals,

because the inner logic changes are key for generating the EM traces. We primarily

focus on the HT detection of sequential Trojans in this paper, because the method

achieves the best results due to the Trojans’ relations with the original circuit’s

clock and inner logic values.

2.1 HTs and EM radiation

EM radiation arises as a consequence of current flows within control, I/O, data

processing or other parts inside a chip. In real chips, current only flows when there

are changes in logic states, thus the EM radiation carries information about the

currents and hence the events and relevant states inside the chips. Clearly, HTs are

modifications to original circuits and HTs usually consist of trigger parts and

payload parts. The trigger parts typically have strong relations with clock signals,

FSMs or state nodes in the original circuits, thus will generate strong EM radiation.

The payload parts are responsible for conducting malicious functions. Also, when

the payload parts take effect, they will generate strong EM radiation. Even if the

HTs’ trigger parts remain silent, they will still monitor the internal signals and

influence the current flows within the IC, thus they will also affect the EM radiation

of the IC. Further, the structural changes in the IC, which are introduced by HTs,

will cause the variations in leakage currents, which will also alter the EM radiation.

With the help of state-of-the-art data processing techniques, we neither require the

Trojan to be brought to the triggering state, nor the effect of the Trojan payload to

be observed.

3 Golden chip free EM spectrum modeling and Trojan detection

methodology

In this section, we discuss the overall framework, algorithms and steps included in

the EM radiation modeling and Trojan detection methodology. The overall frame-

work is demonstrated in Fig. 1. The whole framework has three steps. In the first

step, the genuine RTL design and known Trojan-infected RTL design are feed into

the EM simulation model to obtain the training spectra for the neural network. In

the second step, EM radiation is collected from the fabricated chips under test and
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is transformed to frequency domain. In the third step, the trained neural network is

utilized to detect whether the chips under test are Trojan infected or not.

3.1 RTL EM side channel radiation model

Concerning the simulation of an IC’s EM side-channel radiation, a few papers have

put forward some ideas using Hamming Distance, Hamming Weight or improved

models [9]. The existing models have several drawbacks, including not scalable for

very large designs, not considering real hardware implementations, etc. The model

in this paper is built based on Hamming Distance, and the simulated traces are

modeled with specific factors of circuits. The factors that contribute most to the EM

radiation, such as data transitions and driving capability, are taken into consider-

ation, while factors that have little impacts for direct near-field EM radiation, like

coupling effect, are ignored. Through optimum seeking of factors, major parts of

the radiation which caused by signal transitions are modeled.

The model is designed for matching with actual test data. The main contributors

for EM radiation will be data transitions and driving capabilities. Specific opti-

mization is made targeting FPGA implementation by taking the actual executions

of the circuit into consideration. In the FPGA implementation, the initial and final

states of the j-th register/LUT are denoted as Mj and Nj respectively, and t

represents the moment of the transition. A script written in tcl language is utilized

to calculate registers, LUTs and driving capabilities. The fan-out number of the j-th

register or LUT is denoted as Fj, then the simulated EM side-channel trace RðtÞ is
modeled as Equation (1), where � denotes the exclusive OR operation.

RðtÞ ¼
Xn
j¼1

Fj � ðMj � NjÞ ð1Þ

All results from Equation (1) are added up along the time axis to get the

simulated traces in time domain with every fan-out number as their weights. Also if

the stimuli changes, the simulated traces vary accordingly. The simulated EM

signal can serve as the “golden-reference” for EM side-channel based Trojan

detection. With the trusted RTL source code, we apply the source code in our

EM model to generate the golden EM data. Then Fast Fourier Transform is applied

on the EM data to get the EM spectrum.

3.2 Golden chip and HT EM radiation construction

The principal basis of the golden chip free EM side-channel based HT detection

methodology is to find the differences between the simulated trace and the

Fig. 1. Golden-chip free Trojan detection framework
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measured traces from chips under test. The signal in time domain is RðtÞ, and
its corresponding expression in frequency domain is denoted as Sð!Þ. According to

Fourier transform we have Equation (2), where ω is its corresponding frequency.

Sð!Þ ¼ FðRðtÞÞ ¼
Zþ1
�1

RðtÞe�j!tdt ð2Þ

The detailed composition of FðRðtÞÞ signal captured by the probe includes main

clock and its harmonics, whose frequency can be denoted as g1, g2 � � � gg respec-

tively, some periodic signals generated by the circuits, whose frequency can be

denoted as f1, f2 � � �ff respectively, and other unintended signals, including

process variations and noises, denoted as U. Assuming a sequential HT with signal

transition frequency T1 is inserted into the circuit, under the same circumstances

and after FFT, the EM signals captured by the probe are formulated as Equation (3),

where A1i, A2i, A3 and A4 denote the magnitude of each frequency components,

respectively. Considering the Trojan’s influence A4SðjT1Þ, we are able to separate

different components inside the circuit. We can utilize the features of the Trojan’s

radiation components, either trigger parts or payload parts, to detect Trojans from

golden EM model.

FðRðtÞÞ ¼
Xg
i¼1

A1iSðjgiÞ þ
Xf
i¼1

A2iSðjfiÞ

þ A3SðjUÞ þ A4SðjT1Þ
ð3Þ

3.3 Data processing and neural network based Trojan detection

The measured EM radiation is exposed to all kinds of noises, so denoising process

is needed to optimize the data. When measuring traces through experiments, the

traces are averaged using the oscilloscope to eliminate most of the random noise.

After the data is acquired using the oscilloscope, further denoising is performed to

reduce noise and rise signal-to-noise ratio (SNR) [6]. After denoising step, the EM

data is transformed into frequency domain using FFT. To fully utilize the abundant

spectral features of the EM spectra, the neural network is the most suitable

algorithm for retaining and extracting EM radiation signatures [10]. Neural net-

work’s application in the field of HT detection is still in exploratory stage, but it has

a strong ability of nonlinear mapping and adaptive learning ability. To be more

comprehensive, other than the simulated genuine circuit, a few representative

known Trojan-infected benchmarks are also simulated in the EM model to train

the neural network.

The EM model’s output FðRðtÞÞ is used as the inputs for the neural network.

More specifically, the FFT of RðtÞ matrix, SðwÞ, is the input signal for the neural

network. In the training process of the neural network, the size of the input layer is

N, which is the dimension of SðwÞ. The hidden layer has M neurons and the output

of the j-th neuron of the hidden layer is denoted as Hj. The output signal Ok is

described as Equation (4), where Wij is the weight between input layer and hidden

layer and Zjk is the weight between hidden layer and output layer. The topology of

the neural network is illustrated in Fig. 2. Through utilizing existing pattern
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recognition tools
1
, we train the network to update the weights until it achieves

convergence. After the neural network achieves convergence, it is utilized for

Trojan detection, and then the data collected from chips under test are applied as

inputs to detect Trojans by checking the outputs of the trained neural network.

Ok ¼
XM
j¼1

HjZjk ¼
XM
j¼1

XN
i¼1

WijSðwÞi
( )

Zjk ð4Þ

4 Experimentation and Trojan detection

To validate the proposed EM radiation modeling methodology and Trojan detection

framework, we carried out real hardware Trojan detection experiments on a FPGA

platform. Several data processing steps are carried out to find the differences in

simulated spectrum and actual spectra as discussed in Section 3.3.

4.1 Experiment setup

The experiment setup is shown in Fig. 3. The experiment platform is a SAKURA-

G FPGA board specifically designed for research and development on hardware

security. Two Spartan FPGAs are integrated on the board. The input operands are

provided by the controller FPGA to the main FPGA. The main FPGA is in charge

of conducting out operations and will not be affected by other parts on the board. A

LANGER EM near field probe, which is fixed on the board, is utilized to acquire

EM radiation. After acquiring EM radiation by the near field probe, the signals are

amplified using a pre-amplifier PA303 up to 30 dB magnification. Then the signals

are collected and transferred to the computer for further analysis.

4.2 Trojan detection results

Explicitly, we choose 5 categories of AES circuits downloaded from the Trust-

HUB online repository [11] as benchmarks. The Class 1 (genuine AES) represents

the original circuit, Class 2 (AES-T100 & T200) represents data-leak Trojans

through capacitance, Class 3 (AES-T1600 & T1700) represents data-leak Trojans

through antenna, Class 4 (AES-T1800 & T1900) represents denial-of-service type

Fig. 2. Neural network topology

1We only utilize the neural network algorithm for Trojan detection, however, how to design and optimize the
neural network is out of the scope of this paper.
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Trojans, and Class 5 (AES-T2000 & 2100) represents combinational and sequential

data-leak Trojans. In the training process, we randomly pick 1000 simulated

genuine AES traces, which are used as the trusted reference bundle. Also, 1000

simulated traces each from AES-T100, AES-T1600, AES-T1800 and AES-T2000

are picked as known Trojan-infected benchmarks. For the purpose of evaluating the

EM model and Trojan detection, the output of the neural network is set as five

classes, which are genuine and different Trojan-infected classes. A pattern recog-

nition shallow neural network toolkit in MATLAB is utilized through the nprtool

GUI. The number of hidden layer is set as one, then an iteration script is developed

to change the neurons in the hidden layer to achieve the best training result. More

specifically, 70% samples are used for training, 15% samples are used in validation,

and 15% samples are used during testing to measure the network performance. The

neural network is trained following a scaled conjugate gradient method, and the

best validation performance is reached at epoch 24. The training results are shown

in Fig. 4. The neural network has three layers and ten hidden neurons.

Fig. 3. Experiment setup

Fig. 4. Neural network training results
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The detection results are shown in Fig. 5. From the detection results of Class 1,

the original AES circuit’s recognition rate is over 80%, while other circuits’

contributions in the Class 1 are significantly lower. This observation confirms

two conclusions: the first is that our EM simulation model matches with real

measurements well with the presence of noise and variations, and the second is that

our proposed EM detection framework can clearly distinguish between genuine and

Trojan-infected circuits. From the results of Class 2 and Class 3, the AES-T200

and AES-T1700 are totally separated from other HTs within each category. From

the results of Class 4 and Class 5, although the AES-T1900 and AES-T2100 are

mixed up by the tool, they are still distinguishable from other HTs. Overall, our

framework can detect all Trojans, further, as a proof-of-concept, our framework can

distinguish even different types of Trojans with an averaged 89.2% accuracy rate.

Compared with the work in [6], there are fewer constraints on the Trojans and input

vectors, besides, the proposed Trojan detection method is more applicable to real

applications as the Trojans can be detected before activation.

5 Conclusion and future work

In this paper, we propose a hardware Trojan detection methodology using EM side-

channel based spectrum modeling and statistical data analyzing. We demonstrate

that the simulated EM spectrum can be used as a golden reference for HT detection,

and the experimental results validate the effectiveness of our method. The frame-

work in this paper makes side-channel based hardware Trojan detection more

applicable and practical for real implementations.
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Fig. 5. Trojan detection results
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