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Abstract: In this letter, a new filtering method for digital phase-locked

loops (DPLLs) is proposed. The proposed method is based on finite impulse

response (FIR) filtering, which estimates the state variables of a system using

recent finite measurements. FIR filtering requires the optimal selection of a

design parameter, the memory size, which has been cumbersome. A method

to compute the optimal memory size has been proposed; however, it is

ineffective when the noise information is uncertain. Thus, in this letter, a

memory parameterized FIR filter (MPFF) is proposed to solve this problem,

and the DPLL simulation results are presented for performance demonstra-

tion.
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1 Introduction

Phase locked-loop (PLL) is a control system circuit used to generate an output

signal, that tracks the phase of an input signal. A PLL includes a phase detector, a

voltage-controlled oscillator, and a loop filter [1]. Currently, digital PLLs (DPLLs)

can use software implementing state estimation algorithms as phase detectors. The

Kalman filter (KF) [2, 3, 4] and finite impulse response (FIR) filter [5, 6] have been

used for phase detection in the DPLL. While the KF uses all the measurements

from the initial time to the current time, the FIR filter uses only recent finite

measurements. Thus, the FIR filter is also called the finite memory filter and has

better robustness against modeling and computational errors than the KF [7, 8, 9,

10, 11]. However, the FIR filter requires accomplishing a cumbersome task, which

is the selection of a design parameter, the memory size (or horizon size). The

memory size is the number of measurements used for a single FIR estimation and is

a key parameter affecting the FIR filter performance. In [6], a method to compute

the optimal memory size, Nopt, was proposed. Using this method, Nopt can be

computed when the noise covariance is known. The measurement noise covarian-

ces of sensors are available from experiments, but the process noise covariance

remains uncertain and should be estimated. An incorrect estimate of the process

noise covariance results in the incorrect computation of Nopt. Thus, an alternative to

compute the memory size has been proposed in this letter. The proposed method is

called the memory parameterized FIR filter (MPFF), which incorporates various

memory sizes using the Gaussian sum approximation technique [12, 13] instead of

selecting an Nopt value. Using this method, the MPFF can offer a reliable perform-

ance despite the process noise covariance remaining uncertain. The performance of

the MPFF is better than both the KF and the conventional FIR filter, as demon-

strated by the DPLL simulations.
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2 Main results

The utilization of the MPFF requires the state space models of a system to estimate

its state variables. The state space models of the DPLL have been presented in

[3, 5, 6], where the two state variables, the zero crossing point α and the timing

offset β at a discrete time k are defined as �k ¼ t0 þ kðT1 � T0Þ and �k ¼ T1 � T0,

where t0 is the initial timing offset, T0 and T1 are the sampling periods of the

receiver and transmitter, respectively. The state vector at a discrete time k is defined

as xk ¼ ½�k �k�T , and the state equation is written as

xkþ1 ¼ Axk þ wk; ð1Þ

A ¼ 1 1

0 1

" #
; ð2Þ

where wk is the process noise vector and is assumed to be Gaussian noise with a

covariance Q. The measurement system obtains noisy measurements of the first

state, �k. The measurement equation is written as

yk ¼ Cxk þ vk; ð3Þ
C ¼ ½1 0�; ð4Þ

where vk is the Gaussian measurement noise with a covariance R.

The MPFF estimates the state vector, xk, from the noise measurement yk. The

MPFF is an FIR filter that uses multiple memory sizes. We adopt the minimum

variance FIR filter (MVFF) as a component of the MPFF. The MVFF equation for

the state space models (2)–(4) is

x̂k ¼ HN YN; ð5Þ
where x̂k, HN , and YN are the estimated state, the gain matrix, and the augmented

measurement matrix, respectively. HN and YN are defined as

HN ≜ JN
W1;1 W1;2

WT
1;2 W2;2

" #�1 ~CT
N

~GT
N

" #
R�1

N ;

JN ≜ ½AN AN�1 AN�2 � � � A I�;
W1;1 ≜ ~CT

NR
�1
N

~CN;

W1;2 ≜ ~CT
NR

�1
N

~GN;

W2;2 ≜ ~GT
NR

�1
N

~GN þQ�1
N ;

~CN ≜

C

CA

CA2

..

.

CAN�1

2
666666664

3
777777775
;
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~GN ≜

0 0 . . . 0 0

C 0 . . . 0 0

CA C . . . 0 0

..

. ..
. ..

. ..
. ..

.

CAN�2 CAN�3 . . . C 0

2
6666664

3
7777775;

RN ≜ ½diagðRf Rf � � � Rf

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{N

Þ�;

QN ≜ ½diagðQf Qf � � � Qf

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{N

Þ�;
YN ≜ ½yTk�N yTk�Nþ1 � � � yTk�1�T ; ð6Þ

where Qf and Rf are the process and measurement noise covariances respectively,

used for filter design. In (5) and (6), the subscript N indicates the memory size. HN

and YN change according to the memory size N, which implies that x̂k also changes

according to N.

The MPFF operates multiple MVFFs in parallel using different memory sizes

and obtains multiple estimates. The multiple estimates are then combined using the

Gaussian sum technique [12, 13]. We have assumed that the process and measure-

ment noises are Gaussian, and that the estimated state is also Gaussian. The

probability density function (PDF) of the estimated state is represented by the

conditional PDF, pðxkjYkÞ, where Yk ≜ fyi; i ¼ 1; � � � ; kg indicates the sequence of
measurements up to the current time k. Thus, the Gaussian sum approximation to

combine multiple Gaussian PDFs is

pðxkjYkÞ �
XNF

i¼1
wi

kNðxik; xikjk;Pi
kjkÞ ð7Þ

where wi
k is the weight,Nðxik; xikjk;Pi

kjkÞ is the Gaussian PDF with the mean xikjk and
the variance Pi

kjk, and M is the number of Gaussian PDFs [14]. For the MPFF, the

weights in (7) are initialized as

wi
0 ¼

1

NF
; i ¼ 1; 2; . . . ; NF; ð8Þ

where NF is the number of MVFFs operating in parallel. The initialized weights are

updated at each time step using the following update rule:

wi
k ¼

pðykjiÞwi
k�1X

j¼1 NF pðykjjÞwi
k�1

; ð9Þ

where pðykjiÞ is the likelihood of measurement yk given the state estimate x̂ik
obtained from the i-th MVFF. The likelihood is computed as

pðykjiÞ ¼
1ffiffiffiffiffi
2�

p
R2

exp
ðyk � ŷikÞðyk � ŷikÞ

R

� �
: ð10Þ

ŷik ¼ Cx̂ik; ð11Þ
Finally, the MPFF combines the multiple estimates using the weights as

x̂k ¼
XNF

i¼1
wi

kx̂
i
k: ð12Þ© IEICE 2019
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3 Simulation

The use of the MPFF is reliable despite the uncertainty of the process noise

covariance. If an incorrect covariance is used, the method proposed in [6] produces

an incorrect Nopt value and the KF performance worsens. We simulated this

situation and compared the MPFF, KF, and the conventional FIR filter (MVFF).

Using the state space models (2)–(4), the state and measurement sequences from

the time step k ¼ 1 to k ¼ 500 are obtained. The initial state and noise covariances

are determined by setting x̂0 ¼ ½0:0005 0:0001�T , Q ¼ 8:33 � 10�8I2, and R ¼
1:0 � 10�5 [5, 6], where I2 is the 2 � 2 identity matrix. The noise covariances are

required for filtering as well, but we assumed the process noise covariance to be

uncertain. Thus, we set Qf ¼ 0:1Q and Rf ¼ R. The design parameters of the

MPFF were chosen as NF ¼ 3, N1 ¼ 10, N2 ¼ 20, and N3 ¼ 30. We then compared

the MPFF with the three MVFFs using the three memory sizes. For performance

comparison, we computed the root mean square error (RMSE) of the estimation for

the first state variable �k.

(a)

(b)

Fig. 1. Comparison of proposed algorithm (MPFF) and Kalman filter
(KF) (a) full picture and (b) zoomed in picture (interval
[150 � k � 500]).
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Fig. 1 shows the RMSE of the KF, MPFF, and the measurements. The filters

should produce a more accurate estimate than that of the noisy measurements. If the

RMSE of a filter is larger than that of the measurement, the filter is unsuitable for

use. In Fig. 1, the KF produces significantly larger RMSEs than those produced by

the measurements in the early stages of the time steps. The MPFF constantly

produces smaller RMSEs than those produced by both, the measurements and the

KF. Thus, the MPFF is more accurate and reliable than the KF in this DPLL

simulation.

Fig. 2 compares the MPFF with the conventional MVFFs. We see that the

RMSE of the MVFF is smaller than those of the three MVFFs using N ¼ 10, 20,

and 30. This demonstrates that combining the memory sizes by the Gaussian sum

technique presents a more accurate estimation than using the memory sizes

individually.

4 Conclusion

In this letter, a new filtering method called the MPFF was proposed for the DPLL.

The KF, one of the most renowned filters, exhibited large initial errors when the

process noise information was uncertain. However, the MPFF constantly exhibited

smaller errors than not only the KF but also the conventional MVFF. Thus, the

proposed MPFF can present an accurate and reliable phase detection performance

in DPLLs.
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