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A design of adaptive PID controller based on thermal
characteristics of mobile application processors
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Abstract With the advance of process technology, the power density of
chipsets has rapidly increased, which has resulted in thermal issues.
Modern mobile devices use a thermal management model (TMM) to solve
such thermal issues. In this paper, we propose an adaptive proportional-
integral-derivative (PID) controller based on mobile CPU system charac-
teristics. In the proposed method, we dynamically adjust the PID constants
according to the thermal characteristics. We evaluate thermal mitigation
capability and performance using a commercial smartphone. The results
show that our scheme decreases the overall system temperature by 5.13%
and simultaneously improves the system performance by 5.51%.
Keywords: thermal management model, thermal mitigation algorithm,
PID controller, thermal characteristics, application processor, mobile
device
Classification: Electron devices, circuits and modules

1. Introduction

The power and thermal issues of mobile devices have
been emphasized over the years [1, 2]. With the advance
of process technology, the power density of chipsets has
increased, resulting in rises in on-chip temperature [3, 4, 5].
Many researchers have studied various thermal manage-
ment techniques to solve the thermal problems that occur
when the on-chip temperature exceeds the thermal design
limits of chipsets [6, 7]. In particular, most mobile devices
primarily adopt software-based technologies due to their
compact size and power budgets [8].

J. Zhou et al. designed a two-stage temperature-aware
task scheduling scheme that reduces system energy con-
sumption using a task allocation scheme and slack distri-
bution policy [9]. The authors in [10] presented a tem-
perature-aware dynamic voltage and frequency scaling
(DVFS) technique to co-optimize the power and perform-
ance through frequency stabilization. In previous work
[11], the authors proposed and validated a surface temper-
ature-aware thermal management technique using precise
surface temperature estimation based on thermal RC-net-
work model.

In this paper, we propose a novel adaptive propor-
tional-integral-derivative (PID) controller for mobile proc-
essors with non-linear thermal characteristics because the
conventional PID controller is usually not effective for

controlling higher-order systems, non-linear systems, or
complex systems [12, 13]. In addition, we experimentally
derive the thermal characteristics of mobile processor
and calculate PID constants based on it. The major con-
tributions of this paper are summarized as follows:
• Adaptive PID controller considering CPU operation

pattern1: The thermal characteristics of the target
mobile processor system change in real time accord-
ing to the CPU operation pattern. Therefore, we
propose an adaptive PID controller that dynamically
changes the PID constants according to the CPU
operation pattern in real time.

• PID constants based on system characteristics: We
experimentally derive the power and thermal charac-
teristics of a commercial mobile application processor
(AP). Subsequently, we calculate the PID constants
based on the system characteristics using first order
plus time delay (FOPTD) model and Chien, Hrones,
and Reswick (CHR) method.

• Validation in real mobile systems: We use an off-the-
shelf smartphone to verify thermal mitigation effect
and system performance. We improve the average core
temperature by 0.83%, the average crystal oscillator
temperature by 5.13%, and the performance by 5.51%.

2. Background

2.1 Typical mobile thermal management model
The TMM used in mobile devices is a configurable frame-
work designed by an AP chipset vendor. The purpose of the
mobile TMM is to manage the temperature so that the
chipset does not exceed the thermal design limits while
achieving high performance. This framework uses on-chip
temperature sensors to monitor the temperatures of various
thermal management devices (i.e., CPUs, GPUs, PAs, and
displays). If the temperatures from different thermally active
points exceed the preconfigured set-point, the TMM con-
trols the thermal responses of the entire system according to
the thermal mitigation algorithm (TMA) [14, 15].

2.2 Thermal mitigation algorithm
The TMA defines how to adjust the device performance
mitigation level to reduce the on-chip temperature when the
temperatures of the thermal management devices exceed
the set-point. In particular, the TMA controls the maximum
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1The CPU operation pattern indicates the combination of the number of
active cores and the operating frequency of each core.
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allowable CPU frequency to alleviate CPU thermal prob-
lems2. Since the CPU operates at the highest frequency
available to handle the workload, the TMA can have a
direct impact on the CPU operating frequency by adjusting
the maximum allowable CPU frequency. In this manner, the
TMA manages the thermal risk and performance of the
CPU [15].

The TMA can be classified into threshold control
algorithms and dynamic control algorithms, according to
the method of controlling the performance mitigation level.
The threshold control algorithm limits the performance
mitigation level to a specified level when the thermal
problems occur. Once the temperature falls below a certain
level (clear-point), the mitigation level is again set to the
initial value (maximum performance level). On the other
hand, when the on-chip temperature exceeds the set-point,
the dynamic control algorithm starts to reduce the perform-
ance mitigation level by one step at every sampling time
until the temperature decreases below the set-point again.
As the temperature decreases below the set-point, the
algorithm increases the mitigation level one step at a time,
ensuring that the device can provide better performance.

2.3 Conventional PID controller
The PID controller is widely used and the most common
control algorithm in the process control industry because of
its simplicity and robustness [17, 18]. The general discrete-
time PID controller output uðkÞ can be calculated as

uðkÞ ¼ KpeðkÞ þ KiTs
Xk

i¼0
eðiÞ þ Kd

Ts
½eðkÞ � eðk � 1Þ�: ð1Þ

where eðkÞ is the error value, k is the discrete-time index, Ts
is the sampling period, Kp is the proportional constant, Ki

is the integral constant, and Kd is the derivative constant
[19]. In this case, the eðkÞ is the difference between a
desired response rðkÞ and an actual response cðkÞ. The
PID controller output depends on the PID constants, the
current error value, the sum of historic error values, and the
change rate of the error value. Therefore, the values of the
PID constants must be carefully selected based on the
target process characteristics to guarantee the effectiveness
of the control mechanism [20, 21].

The integral component of the conventional PID con-
troller tends to accumulate large errors, which can cause
overshooting or undershooting control. This is known as
integral windup [22]. To solve this problem, the PID
controller output is calculated using the first derivative of
Eq. (1). The following equation is the velocity form of the
discrete-time PID controller [17, 19]:

uðkÞ ¼ uðk � 1Þ þ Kp½eðkÞ � eðk � 1Þ� þ KiTseðkÞ

þ Kd

Ts
½eðkÞ � 2eðk � 1Þ þ eðk � 2Þ�: ð2Þ

In this paper, we use the velocity form of the PID con-
troller. As shown in Eq. (2), the PID constants are multi-

plied by the change of the error value, the current error
value, and the rate of the error change, respectively.

3. Adaptive PID controller

3.1 Target AP and CPU
In this paper, we select the Snapdragon 801, a high-per-
formance mobile AP, as the target system. The Snapdragon
801 has quad Krait 400 CPU cores of up to 2.4GHz. The
Krait 400 CPU can independently operate at 15 discrete
frequencies with a granularity of approximately 150MHz
in the range of 300–2450MHz [15].

The TMM of the target AP can run three TMAs:
threshold, simple dynamic, and PID control algorithm.
The PID control algorithm of the target system uses conven-
tional PID controller architecture using pre-determined PID
constants. Fig. 1 shows a block diagram of the TMM when
the PID control algorithm is used for CPU thermal manage-
ment. The set-point is used as the desired response, the
actual system response is on-chip temperature, and the error
function is used as the controller input. The PID controller
calculates the maximum allowable CPU frequency accord-
ing to the error function and the PID constants.

3.2 Motivation for proposed PID controller
To use the PID controller, the PID constants must be
calculated based on the characteristics of the target system.
In this paper, we characterize the target system based on
power consumption and temperature variation. Considering
the multi-core platform, there is a significant difference in
power consumption and temperature variation according to
the CPU operation pattern [23, 24, 25, 26].

The Snapdragon 801 has over 60 thousand different
CPU operation patterns because the quad-core can inde-
pendently operate at 15 discrete frequencies. Therefore, we
empirically derive the power and thermal characteristics
that vary with the CPU operation pattern and find the PID
constants for each pattern. Finally, we design an adaptive
PID controller that adjusts the PID constants based on the
CPU operation pattern in real time.

3.3 System characteristics of target CPU
It is time-inefficient to derive the system characteristics for
all CPU operation patterns of the target AP. Therefore, we
derive the system characteristics assuming that all CPU
cores operate at the same frequency. In other words, we
analyze the system characteristics using only 60 CPU
operation patterns. We also classify the operation patterns
with similar system characteristics into groups to reduce the
complexity of implementing the adaptive PID controller.

The analysis of the system characteristics proceeds in
two stages: In the first stage, we classify the entire system

Fig. 1. Block diagram of TMM when using PID control algorithm.

2The CPU operating frequency is set to a value below the maximum
allowable CPU frequency by a Linux governor [16].
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based on the power characteristics. In the second stage, we
derive the thermal characteristics of each group and calcu-
late the PID constants.

3.3.1 Target system group classification
To derive the power characteristics of the target CPU, we
measure the CPU power consumption for all CPU oper-
ation patterns. We use the test scenario (“fast discharger”
application) that allocates almost 100% of the workload to
each core.

Fig. 2 shows the measurement results of CPU power
consumption according to the CPU operation pattern. In
this paper, we divide the target system into four groups
based on the power consumption of the cases using the
maximum frequency (2450MHz) on a single-core system.
Group A includes cases that consume low power (2,000
mW or less). Group B includes cases that consume a
medium level of power (2,000–4,000mW). Group C in-
cludes cases that consume a high level of power (4,000–
6,000mW). Group D includes cases that consume an ex-
treme amount of power (over 6,000mW). As CPU thermal
problems mainly occur when operating in a medium- or
higher-power consumption cases, we analyze the thermal
characteristics by subdividing Groups B–D according to
the number of active cores.

3.3.2 PID constants based on system characteristics
We use the FOPTD model and CHR method to select
the PID constants. The PID constants for each group are
calculated as the average value of the cases belonging to
the group.

The FOPTD model is widely used for the analysis of
various processes because it enables the simple character-
ization of the target process [21, 27]. Fig. 3 shows the
system parameters (steady-state gain (Km), time constant
(T ), and time delay (L)) of the FOPTD model [13, 22]. The
system parameters can be obtained by drawing a tangent
line at the inflection point of the step response of the target
system, as shown in Fig. 3 [20]. The initial PID constants
are then calculated using the CHR method [21, 28]. Table I
summarizes the CHR method formulae. There are two
kinds of CHR method tuning formulae depending on the
degree of overshoot [29]. We calculate the PID constants
using the “with 0% overshoot” formula.

To confirm the CPU thermal characteristics, we meas-
ure temperature variation for all CPU operation patterns

using the fast discharger application3. Fig. 4(a) shows the
measurement results of the CPU core temperature change
for four CPU operation patterns as an example. As shown
in Fig. 4(b), the tendency of the CPU temperature change
is different depending on the CPU operation pattern.
Therefore, we derive the system parameters using the
CPU temperature variation graph for each case, and calcu-
late the PID constants using it. The steady-state temper-
ature of the case where shutdown occurs due to excessive
heat generation is estimated using the linear regression
model according to the CPU power consumption. The
experimental results of the steady-state temperatures of
the target system are given in Fig. 4(b). The dotted line
indicates the cases in which shutdown occurs.

We derive the PID constants based on the thermal
characteristics of all CPU operation patterns and then
calculate the average value for each group. The conven-
tional PID constants continually attempts to minimize the
error. However, the TMM must provide high performance
while solving the thermal issues, rather than maintaining
the on-chip temperature at the set-point. Therefore, we
empirically validate the performance of the initial PID
constants and adjust them to ensure high performance.

Fig. 2. Power consumption of target CPU according to CPU operation
pattern.

Fig. 3. Step response of FOPTD model and system parameters.

Table I. CHR method tuning formulae for set-point regulation

Design Criteria Kp Ki Kd

With 0% Overshoot
0:6T

KmL

0:6

KmL

0:3T

Km

With 20% Overshoot
0:95T

KmL

0:68

KmL

0:45T

Km

(a) Examples of CPU core tempera-
ture measurement results

(b) Steady-state temperature varia-
tion of CPU core

Fig. 4. Results of thermal characteristics experiment of target CPU
according to CPU operation pattern.

3We set the chipset to be forced shutdown if the on-chip temperature
exceeds 110 °C to prevent excessive heat generation and malfunctioning
of the chipset.
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As mentioned in Section 2.3, the derivative constant is
related to the change rate of the process temperature.
Accordingly, the controller output becomes large if the rate
of temperature change is fast. We perform the fine tuning of
the derivative constant to prevent unnecessary performance
limitation.

3.4 Proposal of adaptive PID controller
Fig. 5 shows the procedure in which the maximum allow-
able CPU frequency is set using the adaptive PID control
algorithm. Our control algorithm starts to operate when the
device is powered on. In its initial state, our scheme sets the
maximum allowable CPU frequency to the maximum fre-
quency (2450MHz) of the target CPU and the PID con-
stants to the average value of all groups. The on-chip
temperature of all CPU cores are also periodically moni-
tored in each sampling period. In addition, our proposed
method monitors the current CPU operation pattern in
each sampling period and changes the PID constants in
real time based on the average of the CPU operation
pattern during the sample history length. The error func-
tion calculates the difference between the set-point and the
current core temperature. The adaptive PID controller out-
put is then calculated according to the error function and
the PID constants. The maximum allowable CPU frequency
of the current sampling time is calculated as the sum of the
maximum allowable CPU frequency of the previous sam-
pling time and the controller output of the current sampling
time. In this manner, our adaptive PID control algorithm
manages the CPU thermal issues until the smartphone is
terminated.

4. Evaluation

4.1 Experimental environments
In this paper, we use the commercial smartphone LG G3,
which adopts the Snapdragon 801 as the AP, to validate in
real mobile environments. All the configurations of the
experiments are set to be the same, and the default value
of the device is used: The set-point is set to 85 °C, the
sampling period is set to 100ms, and the performance
mitigation level of the threshold control algorithm is set
to 1750MHz4.

4.2 Experimental methodology
In real mobile environments, the temperatures of various
chipsets inside the smartphone are important, but the rear
surface temperature is also important [11, 30]. Therefore,
we use the on-chip temperature sensors of all CPU cores
and the crystal oscillator. The temperature of the crystal
oscillator represents the rear surface temperature because
the crystal oscillator temperature varies according to the
heat diffused by different components, including CPUs. In
this paper, we use the average temperature during the test
period as the thermal mitigation capability index.

We analyze the overall system performance of the
smartphone using the AnTuTu benchmark v4.5.1. This

benchmark runs several test programs and represents the
system performance as the summation of each program
score, which is called the AnTuTu total score. The AnTuTu
benchmark v4.5.1 runs the test programs in the following
order: runtime, CPU integer, CPU float-point, RAM oper-
ation, RAM speed, multitask, database I/O, storage I/O,
2D graphics, and 3D graphics.

In this paper, we repeat a single AnTuTu test to
confirm the heat generation effect in continuous-use
smartphone environments5. We run 10 consecutive single
AnTuTu tests so that the temperature of the smartphone
adequately saturate. We use the average of the AnTuTu
total scores during the AnTuTu back-to-back test as the
system performance index.

4.3 Experimental results
Fig. 6 shows the average temperature of all CPU cores, the
average crystal oscillator temperature, and the variation of
the single AnTuTu total scores during the AnTuTu back-
to-back test. Table II summarizes the thermal mitigation
capability and the system performance.

4.3.1 Results of conventional control algorithms
In Fig. 6(a), the CPU core temperature changes periodi-
cally according to the single AnTuTu test time (approx-
imately 3 minutes). In addition, since the heat generated by
the device accumulates as the AnTuTu back-to-back test
progresses, the crystal oscillator temperature gradually in-
creases and the system performance gradually decreases, as
shown in Fig. 6(b) and Fig. 6(c).

Fig. 5. Overview of CPU thermal mitigation using adaptive PID control
algorithm.

4This mitigation level is the default value of the Snapdragon 801, which
is determined by the device manufacturer. 5We call this test the AnTuTu back-to-back test.
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When using the threshold control algorithm, the core
temperature decreases rapidly after reaching the set-point
during the AnTuTu back-to-back test. Therefore, the aver-
age temperature of the CPU cores is reduced by 12.41%
compared with the simple dynamic control algorithm. This
means that an excessive performance limitation takes place
to dissipate heat. Fig. 6(b) and Table II also show that the
crystal oscillator temperature is kept lower by this effect.
The average temperature of the crystal oscillator in the case
using the threshold control algorithm is 7.93% lower than
that of the simple dynamic control algorithm. However, the
system performance of the threshold control algorithm is
24.47% lower than that of the simple dynamic algorithm
because of excessive performance limitations. Furthermore,
it can be seen that performance degradation is larger when
using the threshold control algorithm.

The mobile TMM aims to guarantee an environment
that can provide high performance while satisfying thermal
constraints. Therefore, the simple dynamic control algo-
rithm is the adequate method for managing CPU thermal
problems than the threshold control algorithm which
evokes severe performance degradation. Hence, we mainly
compare the proposed algorithm with the conventional
simple dynamic control algorithm, in the next subsection.

4.3.2 Results of adaptive PID control algorithm
The adaptive PID control algorithm basically prevents
excessive performance limitation by adjusting the PID
constants according to the CPU operation pattern in real

time. Furthermore, the fine tuning of the derivative con-
stant reduces performance limitation in the period where
the rate of temperature change is fast. Therefore, as shown
in Fig. 6(a), the adaptive PID control algorithm provides
better performance while maintaining a relatively high
temperature during the CPU test period. The AnTuTu total
score of the proposed scheme is 32557.84, which is 5.51%
higher than that of the simple dynamic control algorithm
and 31.34% higher than that of the threshold control
algorithm. In addition, Fig. 6(c) shows that the proposed
algorithm minimizes performance degradation during the
AnTuTu back-to-back test.

When using the proposed control algorithm, the aver-
age temperatures of the CPU cores and the crystal oscillator
are 76.22 °C and 50.71 °C, respectively. Compared with the
simple dynamic control algorithm, the core and crystal
oscillator temperatures are 0.83% and 5.13% lower. As
shown in Fig. 6(a) and Fig. 6(b), it is possible to keep the
crystal oscillator temperature relatively low by reducing the
CPU temperature by aggressively throttling CPU perform-
ance during the period in which the CPU peak performance
is not required. In this paper, we focus on improving the
system performance by using the proposed algorithm, but
if the set-point is lowered according to other design goals,
the temperature can be further improved while maintaining
the system performance.

5. Conclusion

The mobile TMM aims to ensure that chipsets can provide
high performance while meeting thermal constraints. In this
paper, we experimentally derive the PID constants based
on the system characteristics, and then propose an adaptive
PID control algorithm that dynamically adjusts the PID
constants to be adequate for the CPU operation pattern.
The proposed algorithm improves the system performance
and temperature simultaneously by considering the system
characteristics that vary in real time. Compared with the
simple dynamic control algorithm, our method improves
the system performance by 5.51%. Moreover, our scheme
reduces the average temperatures of the CPU cores and the
crystal oscillator by 0.83% and 5.13%, respectively.

In conclusion, our research provides insights into the
design and application phase of TMM for mobile proces-
sors. Furthermore, the methodology of deriving the system
characteristics of mobile AP can provide design flexibility
because it can be easily applied to other mobile AP plat-
forms and different chipsets. As a future work, we are
planning to improve the TMM of heterogeneous mobile
processors and 5G modem.

Acknowledgments

Ok Hyun Jeong is the corresponding author of this paper.
This research was supported by the Commercializations
Promotion Agency for R&D Outcomes (COMPA) funded
by the Ministry of Science, ICT and Future Planning
(MSIP) (No. 2017K000348, Development of a circular
antenna array system for P2MP transmission over the
millimeter-wave environment).

(a) Average CPU core temperature

(b) Average crystal oscillator tem-
perature

(c) Variation of single AnTuTu total
scores

Fig. 6. Experimental results during AnTuTu back-to-back test.

Table II. Comparison of thermal mitigation capability and system
performance according to TMA type

TMA Types Threshold
Simple
Dynamic

Adaptive
PID

AnTuTu Total Scores 24789.11 30856.18 32557.84

Average Cores 68.37 76.86 76.22

Temperature Crystal
49.53 53.45 50.71
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