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A low power wide tuning range two stage ring VCO with frequency
enhancing

Chenggang Yan1, Jianhui Wu1a), Chen Hu1, and Xincun Ji2

Abstract Awide tuning range frequency enhanced two stage ring voltage
controlled oscillator (VCO) is proposed in this letter. The proposed delay
cell increases the transmission gain by inserting a resistor between input
and output, which consumes lower power to generate same oscillating
frequency. A rail-to-rail effective voltage tuning range is obtained by both
tuning of tail current and the strength of cross coupled latch. It is important
for advanced process, which has low standard supply voltage and high
threshold voltage. The proposed VCO is fabricated in TSMC 40 nm
CMOS technology. The measured phase noise of proposed VCO is
−98.05 dBc/Hz at 1MHz offset with 1.38GHz carrier frequency while
consuming 1.1mW from a 1.1V standard supply. The figure of merit
(FoM) is 160.4 dBc/Hz.
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1. Introduction

Voltage controlled oscillator (VCO) is an essential compo-
nent in modern integrated circuit, such as radio-frequency
(RF) transceivers [1, 2, 3, 4, 5, 6, 7, 8] and clock data
recovery (CDR) systems [9, 10, 11, 12, 13, 14, 15, 16, 17].
LC VCO has much better jitter performance but limit tuning
range. LC VCO can expand the tuning range by switched
inductors or capacitors [1, 9], which really consumes un-
acceptable area in advanced process. Thus, area efficient
ring VCOs are more preferred than LC VCO in advanced
CMOS process. In previous works, the N-path filter en-
hanced ring VCO [10] and time-interleaved ring VCO [18]
have achieved excellent phase noise performance. How-
ever, for low power radio frequency transceivers, the two
stage ring VCOs are the preferred choice. Because it has the
lowest power consumption and smallest chip area to gen-
erate quadrature local oscillating signals. Additionally,
the ring VCO usually has small linear tuning voltage
range and small power to frequency efficiency compared
to LC VCOs. Therefore, how to extend the linear tuning
voltage range and enhance the oscillation frequency without
dissipating additional power are critical design issues.
In previous works, many researchers have focused on low
power consumption in two stage ring VCOs [19, 20, 21, 22]
and others focused on linearly or wide frequency tuning

range of ring VCOs [23, 24, 25, 26, 27, 28]. The authors of
[19, 20] designed the ring VCOs with low supply voltage
to reduce power dissipation. However, the oscillating fre-
quency in these architectures is more sensitive to supply
voltage and the frequency tuning range is limited by the low
supply voltage. Moreover, the bulk tuning technique in [20]
required special process and it would lead latch-up problem
with standard supply voltage. In [23, 24, 25], multiple
varactors or voltage to current converter was employed to
obtain constant voltage to frequency gain. However, these
methods dissipate more current with generating same fre-
quency. In [26], the effective voltage tuning range was only
0.4V with 1.1V supply. It deteriorates phase noise perform-
ance and increased the loop design complexity with same
frequency tuning range.

This work presents a low power dissipation and wide
tuning range two stage ring VCO. A resistor is inserted
between input and output in proposed delay cell, which
speeds up the transition of output. Moreover, the additional
resistors increase the maximum current to the load capaci-
tance for improving the phase noise performance according
to impulse sensitivity function (ISF) [29]. The frequency
tuning is realized by adjusting tail current and the resist-
ance in cross couple routes. The tuning voltage is effective
in the whole supply range.

This paper is organized as follows. In Section 2, the
proposed ring VCO is analyzed. Section 3 gives the sim-
ulation and measurement results. Finally, a conclusion is
provided in Section 4.

2. The proposed low power two stage ring VCO

The block diagram of a differential two stage ring VCO is
shown in Fig. 1. The closed loop transfer function (TF) of
two stage ring VCO can be expressed as:

Fig. 1. Block diagram of differential two stage ring VCO
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HclðsÞ ¼ ½HðsÞ�2
1 þ ½HðsÞ�2 ð1Þ

Fig. 2(a) shows a conventional delay cell in two stage
ring VCOs. The conventional delay cell is constituted
of main inverter (MN, MP), cross coupled latch (ML),
varactors and tail current source (IS). The transfer function
of conventional delay cell is:

HcðsÞ ¼ Gm=CL

s þ ðGds � gmlÞ=CL
ð2Þ

where Gm is the sum of trans-conductance of MN and MP,
which is determined by the size of transistors and the value
of tail current IS. gml is the trans-conductance of cross
coupled transistor ML. Gds is the total conductance gen-
erated by channel length modulation and CL denotes the
total load capacitance at output node including varactors.
Thus the oscillation frequency according to Barkhausen
criteria can be expressed as follow:

fosc,c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

m � ðGds � gmlÞ2
q

2�CL
ð3Þ

For robust oscillation start up, Gds-gml must be negative,
which ensures the real part of complex-conjugate poles in

the closed-loop TF negative. Fig. 2(b) shows the proposed
delay cells, which insert a resistor between input and output
node to speed up the transition rate at output. The transfer
function of proposed delay cell and the oscillation fre-
quency of proposed two stage ring VCO can be expressed
as below:

HpðsÞ ¼ ðGm þ gsÞ=CL

s þ ðGds � gml þ gsÞ=CL
ð4Þ

fosc;p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGm þ gsÞ2 � ðGds � gml þ gsÞ2

p

2�CL
ð5Þ

where gs is the conductance generated by resistor Rs.
Since Gds-gml is negative, the first item in the root becomes
larger and the second item becomes smaller after inserting
resistor Rs. Additionally, the load capacitance CL only
contains parasitic capacitance. Thus, the oscillating fre-
quency is enhanced with the same trans-conductance of
main inverter and cross coupled transistors. In other words,
the proposed two stage ring VCO can consume less power
to generate same oscillating frequency. For the frequency
tuning, a NMOS transistor paralleled with tail current
source and two switch PMOS transistors connected addi-
tional cross coupled latch are controlled together for the rail
to rail tuning range. When the control voltage VC < VTHC

(the threshold voltage of MC), the change of VC only
affects the on resistance of switch PMOS transistors MS

to tune the oscillating frequency. When VC > VDD � VTHS,
the control voltage only impact on MC. In the middle
range, both branches can affect oscillating frequency. Thus,
the frequency tuning can be more linear in the whole
voltage range by optimally selecting the sizes of MC and
MS. Additionally, the tail current and the size of tuning
NMOS transistor Mc can be tuned with a two bits signal
Code<1:0> to obtain larger tuning range.

3. Simulation and measurement results

The proposed two stage ring VCO is fabricated on TSMC
40 nm standard CMOS process. Fig. 3 shows the micro-
graph and layout details of proposed ring VCO. The active
area of proposed two stage ring VCO without output buffer
and guard ring is 0.0028mm2. The power consumption is
0.45mW∼1.1mW with different control voltage and 2 bits
tail current banks. In conventional methods, the frequency
tuning usually realized by tuning the varactors or the
strength of cross coupled transistors.

Nevertheless, the methods of tuning varactors add
more load capacitance (CL), which significantly decreases
the oscillating frequency as shown in formula (3) and (5).
Additionally, tuning the feedback strength of cross coupled
transistors with inserting switch transistors avoid adding
more load capacitance and have much larger tuning range.
However, the tuning voltage only work when switch tran-
sistors turn on as shown in Fig. 4(a) (Tuning by MS).

In our work, the frequency tuning combined tuning
switch on resistance and tuning tail current to obtain a rail
to tail effective voltage tuning range. Fig. 4(a) shows the
simulated tuning curves of the three methods. Obviously,
the proposed combined method can obtain a whole effec-

(a) Conventional 

(b) Proposed 

Fig. 2. Schematic of delay cell in two stage ring VCO
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tive voltage tuning range, which is beneficial for phase
noise performance and loop parameters design. The tail
current can change from 0.4mA∼1mA according to 2-bit
control signal Code<1:0>. The size of tuning NMOS
transistor Mc is also changed corresponding to the tail
current to acquire approximate frequency tuning gain in

each sub-band. The measured overall frequency-tuning
range (FTR) of the proposed ring VCO is 0.86GHz∼
1.38GHz as shown in Fig. 4(b). Fig. 5 shows the measured
phase noise of the proposed VCO at 1.38GHz. The phase
noise at 1MHz offset is −98.05 dBc/Hz. Probably due to
supply noise, a carrier instability is observed at low fre-
quency offset (about 10 dB/decade phase noise slope be-
low 100KHz). And then a clear 30 dB/decade phase noise
slope and 20 dB/decade phase noise slope are observed for
frequency offsets between 100KHz∼2MHz and above
2MHz, respectively. Additionally, a short sampling time
of spectrum analyser also limited the phase noise measured
precision in low offset range. Table I shows the perform-
ance of our work and the comparison with previous VCOs.
Obviously, the proposed ring VCO has much better FoM
value than traditional quadrature ring VCOs. Although the
TIRVCO in [18] achieved a little better FoM than the
proposed VCO, it cannot generate quadrature signals and
has limited voltage tuning range. And the proposed ring
VCO obtain similar FoM with area (FoMA) with LC VCO
in [1].

4. Conclusion

This letter presents a frequency enhanced two stage ring
VCO, which has rail to rail effective voltage tuning range.

(a)

(b)

Fig. 4. (a) Simulated tuning curves of proposed method and con-
ventional methods. (b) Measured tuning curves of proposed ring VCO
swept Code<1:0>

Fig. 5. Measured phase noise of the proposed VCO at 1.38GHz

Table I. Performance comparison of VCOs

Ref. [1] [18] [20] [24] [30] [31] This Work

Process (nm) 180 65 130 65 180 130 40

Supply (V) 1.8 1 0.5 1.2 1.8 1.2 1.1

Power (mW) 16.2 2.51 0.19 0.96 13.6 3.4 1.1

Frequency (GHz) 0.9/4.5 3.47 0.433 0.807 2.13 1.26 1.38

Tuning range (GHz) 0.9∼4.5 1.7∼3.47 0.16∼2.5 0.5∼0.8 1.57∼2.76 1.1∼1.45 0.86∼1.38

Range of Vtune (V) 0∼1.8 0.7∼1 0∼0.5 0∼1.3 0∼1.8 0.1∼1.1 0∼1.1

PN (dBc/Hz)
@1MHz

�133=�127 −98.7 −91.6 −88.6 −91.1 −88 −98.05

Quadrature N N Y Y Y Y Y

Area (mm2) 1.1 0.003 0.0025� 0.006 0.13 0.0028 0.0028

FoM (dBc/Hz) 180/188 161.7 151.6 146.9 149.7 145.8 160.4

FoMA (dBc/Hz) 179/187 186 178� 169 159 171 186

�The Area of VCO estimated from MicrophotographFoM ¼ 20 logðfo=foffsetÞ � 10 logðPDC=1mWÞ � PNðfoffsetÞ
FoMA ¼ 20 logðfo=foffsetÞ � 10 logðPDC=1mWÞ � PNðfoffsetÞ � 10 logðArea=1mm2Þ

Fig. 3. Micrograph and layout of proposed two stage ring VCO
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By inserting a resistor between input and output of delay
cell, the oscillating frequency could be enhanced without
consuming more current. The rail to rail voltage tuning
range is obtained by combining tail current tuning and
switch on resistance tuning. It could reduce the voltage
to frequency gain for same frequency tuning range, which
is beneficial for phase noise performance and phase locked
loop parameters design. By employing these two tech-
niques, the proposed two stage ring VCO obtain a fairly
high FoM compared to previous differential ring VCOs.
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