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Study on sorting method of zinc silver battery based on multi-step
FCM clustering algorithm

Ran Li1a), Jie Yao1, and Yongqin Zhou1

Abstract In order to solve the problem of consistency after grouping of
silver zinc battery, a multi-step FCM (MSFCM) algorithm is proposed for
the separation of silver zinc battery. The method uses the clustering
validity function to determine the optimal class number, two times of
FCM sorting algorithm in optimal results, obtained classification results
of different applications in the battery cycle life. Using the method of
dynamic consistency life cycle, attenuation rate decreased significantly in
the 30 cycle life test after the capacity decay rate does not exceed the idea
of 10%.
Keywords: silver-zinc battery, fuzzy c-mean, discharge voltage platform,
consistency, rate of capacity decay
Classification: Electron devices, circuits and modules

1. Introduction

Zinc-silver batteries have the characteristics of high spe-
cific energy, high specific power, stable discharge voltage,
good reliability and safety [1, 2]. Therefore, it is widely
used in underwater, water level equipment and aerospace
[3]. Based on the demand for high-power and high-ca-
pacity batteries in these fields, the zinc-silver batteries on
pack using is an effective solution [4, 5]. However, the
initial performance problems between the individual cells
in the battery pack are not uniform, which accelerates the
degradation of battery capacity, thereby resulting in pre-
mature failure of the battery pack, and may even cause
safety problems [6, 7]. Ordinary zinc-silver battery with a
service life for about 30 times will aggravate the life decay
after being used in group. Therefore, it is necessary to
improve the consistency of the initial performance of the
participating cells by sorting before combining [8, 9].

Many researchers have focused on using the charge-
discharge voltage curve as a measure of battery perform-
ance and differences, and have developed a series of meth-
ods for automatic battery sorting. Duo Zhihua et al. [10]
proposed a categories algorithm based on data analysis
theory for threshold criteria sorting battery, and a calcula-
tion method based on fuzzy decision-making to quickly
identify battery capacity and curve consistency. Shan Yi
[11], by using the hierarchical clustering method to obtain
the difference between the batteries, the test showed that the

sorting effect of the method is better. Wen Tao et al. [12, 13]
proposed a battery sorting method based on eigenvectors,
but the standard voltage characteristic vector is more diffi-
cult to determine, which increases the difficulty of the
implementation of the sorting process. Yu Zhilong et al.
[14, 15, 16] built a battery equivalent circuit model with
SOC as the link, and the battery is sorted for the similarity
between the charge and discharge curves based on the
model simulation. Hu Xiaosong et al. [17, 18] conducted
state estimation of lithium battery of electric vehicle’s
lithium battery by means of fuzzy clustering multi-model
support vector machine. Guo Lei [19] and Shi Qingsheng
[20] et al. carried out the sorting of lithium battery by
adopting multiple algorithms such as FCM algorithm,
C-means clustering, multi-objective clustering and kernel
principal component analysis [21, 22, 23, 24, 25, 26].

However, with special electrochemical properties,
zinc-silver battery obviously differs from with lithium-ion
battery in discharge characteristics. Thus, above methods
are not applicable to zinc-silver batteries. On the basis of
previous researches [27, 28], this paper innovatively pro-
posed a FCM multi-stage sorting method for zinc-silver
battery according to its unique characteristics of the dis-
charge voltage platform, and then verified the method.

2. FCM algorithm research

2.1 FCM algorithm
Fuzzy C-means Algorithm (FCM) was a mature fuzzy
clustering algorithm developed by Dunn [23] for the first
time through Bezdek [24, 25]. The algorithm classified
unlabeled data by minimizing the objective function based
on a certain norm and clustering prototype. The FCM
algorithm can be described as follows:

Let X ¼ fx1; x2; � � � ; xng � Rs represents a given set of
cell samples, s is the dimension of the sample space, n is
the number of samples, and c (c > 1) is the number of
clusters that divide X.

The objective function of the FCM algorithm is
defined as:

JðU; v1; � � � ; vcÞ ¼ JðU; V Þ

¼
Xc
i¼1

Ji ¼
Xc
i¼1

Xn
j¼1

�mijd
2
ij; m � 1

ð1Þ

Let U ¼ �ij is a fuzzy partition matrix of c � n whose
element �ij denotes the membership value of the j-th
battery sample xj belonging to the i-th class. The degree
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of membership is used to indicate the extent to which a
battery belongs to a certain type of battery. If its value is 1,
it means that the battery belongs to a certain type of battery.
According to the normalization rule, the sum of the mem-
bership degrees of a data set is always equal to 1, so the
constraint must be met, as shown in equation (2):

Xc
i¼1

�ij ¼ 1; 1 � j � n

Xn
j

�ij > 0; 1 � i � c

�ij � 0; 1 � i � c; 1 � j � n

ð2Þ

Where: V ¼ ½v1; v2; . . . ; vc� is a matrix of s � c composed
of c cluster center vectors; vi represents the cluster center of
the i-th battery; dij ¼ kxj � vik represents the Euclidean
distance from the sample point xj to the center vi, m is a
weighted index, also known as the fuzzy factor, which
determines the degree of correlation between the catego-
ries. The larger the m value, the more blurred the clustering
result. In the absence of special requirements, usually take
m ¼ 2 [29].

For the independent variable ðU; V Þ constraint
problem, using the Lagrangian algorithm combining
equations (1) and (2), the iterative equation is obtained
as shown in equations (3) and (4):

vi ¼
Xn

j¼1 �
m
ijxjXn

j¼1 �
m
ij

; i ¼ 1; 2; � � � c ð3Þ

�ij ¼
Xc
k¼1

dij
dkj

� �2=ðm�1Þ" #�1
; i ¼ 1; 2; � � � c; j ¼ 1; 2; � � � ; n ð4Þ

2.2 FCM algorithm effectiveness index
The FCM algorithm needs to specify the number of clusters
c in advance, for different c values the corresponding fuzzy
clustering division of the algorithm is also different. The
cluster validity indicator can show the quality of the
obtained partitions, thus helping to determine the optimal
partition. Accordingly, the effectiveness indicator can also
be used to find the optimal number of clusters without prior
knowing of the data structure.

In this paper, the ratio-type fuzzy clustering validity
index VXB proposed by Wan [30] is used. The intra-class
compactness is expressed as the sum of the distances of
each sample to the cluster center, and the separation
between classes is measured by the minimum distance
between all clustering centers. The mathematical expres-
sion is expressed as equation (5):

VXB ¼ JmðU; V Þ=n
SepðV Þ ¼

Xc
i¼1

Xn
j¼1

�mijkxj � vik2

nmin
i≠j

kvi � vjk2
ð5Þ

Where, vi is the i-th cluster center.
When the number of clusters K is very large and tends

to the total number of samples n, the VXB index monoton-
ically decreases as the number of clusters increases. VXB is

a very small indicator, that is, the number of clusters
corresponding to the minimum value is the optimal number
of clusters.

2.3 Effectiveness of FCM algorithm
In equation (4), �ij represents the degree to which the j-th
battery sample belongs to the i-th class, and the equation is
transformed into the equation (6).

�ij ¼ 1Xc
k¼1

�
dij

dkj

� 2
m�1

¼ 1

1 þ
Xc
k¼1
k≠i

�
dij

dkj

� 2
m�1

ð6Þ

It is not difficult to find from equation (6) that the larger �ij
is, the smaller dij is, the larger dkj is. That is, the j-th
battery sample xj is closer to the i-th cluster center vi and
farther away from the other cluster centers. Therefore,
measuring fuzzy membership is an important factor in
evaluating the quality of clustering.

3. Battery sorting method

3.1 Charge and discharge test
In order to obtain the discharge curve of the battery sample,
the cycle process as described in Table I was completed for
the sample zinc-silver battery with having a capacity of
75Ah.

Select a sample of zinc-silver batteries with a capacity
of 75Ah from the same batch of a battery manufacturer as
samples 1∼50, and perform steps 1∼4 for samples 1∼50
without any treatment on samples 51∼60.

3.2 Acquisition of cluster samples
The voltage value is extracted as the sampling point at the
same time position of each battery discharge voltage plat-
form to calculate the average value of the sampling points
as the standard point, and the distance between the sam-
pling point of the battery cell and the standard point is the
absolute value of the voltage difference �uij.

The sampling points take the voltage at the initial
stable time t1 voltage of the second voltage discharge
platform, the t2 voltage at the middle of the second voltage
platform, and the t3 voltage difference at the end of the
plateau period which are shown in Fig. 1.

In the discharge curves of samples 1∼50, take t1, t2,
and t3 as 30%, 60%, and 90% of the average discharge time
of 50 battery samples which are shown in Table II.

The average voltage values at the three sampling
points of the sampling samples 1∼50 are as shown in
Table III.

Table I. Battery charge and discharge cycle process

Step Rule End

1 9A constant current discharge Voltage reaches 1.0V

2
5A constant current to constant
voltage charging

Voltage reaches 2.05V

3 9A constant current discharge Voltage reaches 1.0V

4 End, record capacity End
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The voltage difference between the three sampling
points is classified, and the voltage difference �uij is
calculated as shown in equation (7).

�uij ¼ vij � Vj ð7Þ
The voltage difference of the three sampling points in
equation (6) is transformed into a 3-dimensional matrix,
then normalized by the range transformation to obtain a 3-
dimensional matrix V 0, as shown in equation (8).

V 0 ¼

u01
u02

..

.

u050

0
BBBBB@

1
CCCCCA ¼

u011 u012 u013
u021 u022 u023

..

. ..
. ..

.

u050;1 u050;2 u050;3

0
BBBBB@

1
CCCCCA

¼

0:310327 0:118211 0:194806

0:014662 0:057590 0:123391

..

. ..
. ..

.

0:235063 0:095783 0:164184

0
BBBBB@

1
CCCCCA

ð8Þ

3.3 FCM clustering algorithm results
V 0 is the clustering object of the FCM algorithm. The
Number of categories c is taken as 2∼4, the convergence
precision ε is 1e-5, and the FCM algorithm is applied to V 0.
The categories results are shown in following Tables.

The calculated validity function value VXB is expressed
in Table VII.

When the number of categories c is 2∼4, the categories
effect of samples 1∼50 is shown in Fig. 2∼4.

When the number of categories c is 2∼4, the validity
function VXB takes the smallest value when c ¼ 3, so the
best number of categories is c ¼ 3. The first type of cluster
centers at c ¼ 3 are numerically smaller than the second
and third categories, indicating that the voltage difference
between the 27 samples of the first type is the smallest, and
the consistency of the pack is the best. Therefore, it can be
as the optimal results.

Since the number of categories c is too large, the
application of battery sorting into packs is of little signifi-
cance and will not be discussed in this paper.

3.4 MSFCM algorithm
The capacity type battery and the power type battery
having different discharge characteristics can be separately

Fig. 1. Sample 1∼50 discharge curve and battery cell characteristics

Table II. Battery sampling point information

Voltage value/V t1 ¼ 8745:46 s t2 ¼ 16950:92 s t3 ¼ 25426:39 s

Sample 1 1.537716 1.537494 1.519956

Sample 2 1.539023 1.538687 1.518575

Sample 3 1.539252 1.539779 1.524602

... ... ... ...

Sample 49 1.538469 1.53715 1.514557

Sample 50 1.538049 1.537642 1.512856

Table III. Average voltage at the sampling point

Voltage value/V t1 ¼ 8745:46 s t2 ¼ 16950:92 s t3 ¼ 25426:39 s

Sample 1∼50 V1 ¼ 1:539155 V2 ¼ 1:538290 V3 ¼ 1:516110

Table IV. Categories results of Number of categories c ¼ 2

Category Cluster center
Number of
samples

Categories
result

1
(0.1977,
0.1563,
0.1816)

35
1,2,3,4,5,7,8,10,
11,15,16,17,
18 etc.

2
(0.6274,
0.5330,
0.5148)

15
6,9,12,13,14,20,
22,25,26,27,
28,29 etc.

Table VI. Categories results of Number of categories c ¼ 4

Category Cluster center
Number of
samples

Categories
result

1
(0.2030,
0.1319,
0.0930)

24
1,2,4,5,7,8,10,
11,15,17,18,19,
23 etc.

2
(0.1689,
0.1930,
0.3722)

12
3,16,21,27,30,
37,39,40,41,42,
43,45

3
(0.4639,
0.5033,
0.7270)

6 6,9,13,14,20,22

4
(0.7913,
0.5611,
0.3646)

8
12,25,26,28,29,
31,32,33 etc.

Table V. Categories results of Number of categories c ¼ 3

Category Cluster center
Number of
samples

Categories
result

1
(0.2018,
0.1393,
0.1143)

27
1,2,4,5,7,8,10,
11,15,17,18,19,
21 etc.

2
(0.6160,
0.2657,
0.5007)

11
3,9,16,20,27,39,
40,41,42,43,
45

3
(0.7339,
0.5823,
0.4431)

12
6,12,13,14,22,
25,26,28,29,31,
32,33
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sorted according to the actual needs of the project and the
characteristics of the first voltage platform. The power type
zinc-silver battery can maintain a relatively high voltage
during the first discharge stage, but at the end of the
discharge phase, the earliest linear decline trend occurs;
the second discharge platform of the capacity type battery
maintains a long time, and finally end discharges.

The discharge time of V1 ¼ 1:739V and the discharge
time of V2 ¼ 1:10V will be taken, when the optimal
category result (the first type of 27 samples when the
number of category c ¼ 3 expressed in Table V) is taken.
As a quadratic clustering object, the categories of two types
of batteries can be obtained by FCM clustering algorithm.
The data samples are selected as shown in Fig. 5.

Get the data samples as shown in Table VIII.

The standardized formula is as shown in equations (9)
to (10), and the normalized data samples are as shown in
equation (11).

t0ij ¼
tij � minftijj1 � i � 27g

maxftijj1 � i � 27 � minftijj1 � i � 27g ; j ¼ 1

ð9Þ
t0ij ¼

maxftijj1 � i � 27g � tij
maxftijj1 � i � 27 � minftijj1 � i � 27g ; j ¼ 2

ð10Þ

T 0 ¼

t011 t012
t021 t022

..

. ..
.

t027;1 t027;2

0
BBBBB@

1
CCCCCA

¼

0:471117 0:117424

0:845956 0:372475

..

. ..
.

0:188703 1

0
BBBBB@

1
CCCCCA

ð11Þ

In equation (11), T 0 is the clustering object of the
MSFCM algorithm. Through MATLAB programming,
the categories effect is shown in Fig. 6. The sample point
closer to ð1; 1Þ is the power type battery, and the sample
point closer to ð0; 0Þ is the capacity type battery.

Fig. 2. Number of categories c ¼ 2

Fig. 4. Number of categories c ¼ 4

Fig. 5. Data sample selection for twice clustering

Fig. 3. Number of categories c ¼ 3

Table VII. Value of the validity function

Number of
categories c

2 3 4

VXB 1.94650 0.27729 0.59876

Table VIII. Battery sampling point information

Time/s V1 ¼ 1:739V V2 ¼ 1:110V

Sample 1 4638 29526

Sample 2 5514 28920

Sample 3 5115 28212

... ... ...

Sample 26 4068 27630

Sample 27 3978 27429
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The categories results are shown in Table IX. In sum-
mary, based on the first clustering, combined with the first
discharge voltage platform, the second cluster is performed
at different times of the same voltage, and two packs
batteries with good consistency (power type and capacity
type) are selected and can be applied to different applica-
tion fields.

4. Algorithmic verification

The design test paralleled the batteries into packs to verify
the effectiveness of the sorting method. Random extraction
of 3 parallels in the first category, 3 parallels from unsorted
samples 51∼55. And the same extraction discipline for the
second category.

During the test, when the number of cycles of charge
and discharge of the battery pack reached 30, the test was
terminated, and the capacity degradation ratio of each
battery pack at the end of the test was obtained, as shown
in Table X.

The test results of battery packs 1∼4 are summarized
and analyzed, as shown in Fig. 7.

The cycle life of the battery packs 1 and 3 obtained by
the sorting method is higher than that of the battery pack 2
and 4.

Tests show that the categories result of the secondary
separation method used in this study is effectively con-
trolled by the cycle life degradation rate, and the capacity
retention capacity of the battery pack without using any
sorting method is significantly improved. When focusing
on certain specific applications, it is possible to carry out
three-level or multi-stage sorting based on the categories
results of the second-level sorting, and combine the battery
concerned performance parameters and the actual engineer-
ing requirements, and the pack is highly safe, high con-
sistency, high reliability zinc-silver power battery pack.

5. Conclusion

For the inconsistency of zinc-silver battery in pack use,
based on the relationship between battery capacity degra-
dation and discharge voltage curve, a MSFCM sorting
method based on discharge voltage platform was proposed.
This method can be used to comprehensively evaluate
the quality of battery classification, select the appropriate
number of classifications, realize the optimized sorting of
batteries, and prolong the service life of battery packs. The
test results showed that the cycle life degradation rate of the
battery pack obtained by the sorting method is reduced, and
the dynamic consistency is good. The optimal categories
result remains at 90.45% after 30 cycles of life test.
MSFCM algorithm with high precision in big data sample
conditions will be applied to the sorting of small-sized
samples and the study of different working conditions in
the future.
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