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Analytic analysis for effects of input initial phase on input-output
dynamics of memristor

Wei Hu1, Rongshan Wei1, and Jinbiao Lin1,2a)

Abstract The analytic expressions of input-output dynamic parameters of
memristor (i.e., state variable, memristance, and output response) with
respect to initial phase of sinusoidal input are obtained by using Homo-
topy Analysis Method (HAM). Furthermore, a new exponent, called
Response Time Delay (difference) between the Maximum Values of input
and output—RDMV-IO, is proposed to rapidly analyze the memristor
input-output dynamics, under different initial phases. Employing RDMV-
IO, we further reveal the intrinsic relationship between initial phase and
dynamics. The studies are verified by using Mathematica simulations
adopting nonlinear dopant drift memristor model coupled with window
function.
Keywords: memristor, input-output dynamics, initial phase, analytic,
HAM
Classification: Integrated circuits

1. Introduction

Since the successful development of the Hewlett-Packard
(HP) prototype device [1], memristor has drawn a great
deal of research interests [2]. It has been widely used in
embedded memory [3, 4], neurobiology [5, 6], artificial
intelligence [7], neural networks [8, 9], etc., due to the
following advantages: fast speed [10], high density [11],
and low power consumption [12, 13]. Memristor is a
category of nano-devices with nonlinear input-output dy-
namics. The memristor input-output dynamics are the
transient evolutions of dynamic parameters, such as state
variable, memristor resistance (referred to as memristance),
and output response. The dynamics depend greatly on the
state variable that is controlled by the history of input
excitation [1], due to the fact that the state variable is a
core parameter of memristor which controls the other
dynamic parameters. Therefore, the input-output dynamics
is significantly affected by the amplitude, frequency, and
initial phase of input excitation [14].

Many studies [1, 15, 16, 17, 18, 19] have focused on
the effects of the amplitude and frequency of sinusoidal
input on memristor input-output dynamics. However, by
definition, the initial phases of the inputs were ignored or
assumed to be 0° in order to simplify these studies.

Even worse, the commonly used numerical simulations
in these studies may cause serious truncation and rounding
errors [20]. By contrast, analytic analysis is capable of
overcoming these errors and enabling ones to implement
deep theoretical investigations and performance predictions
of memristor [19]. Moreover, the analytic expressions can
be conveniently integrated into EDA tools, which facilitate
the commercial applications of memristor [18].

Unfortunately, there are few analytic studies in the
effect of input initial phase on the memristor input-output
dynamics so far. Elashkar has investigated the influences of
the initial phase of sinusoidal input on the transient mem-
ristance and I-V Pinched Hysteresis Loop (PHL) of mem-
ristor, and has derived the analytic expression of transient
memristance [21]. However, besides the transient memri-
stance, the analytic expressions of other dynamic parame-
ters (i.e., state variable, average state variable, average
memristance, and output response), as functions of the
initial phase, are also considerably important for theoretical
analyses of evaluations of the memristor input-output dy-
namics. In fact, these expressions were not given in [21].
Additionally, Elashkar has adopted a memristor model
without coupling a nonlinear window function for memri-
stance analyses [21], resulting in the analyses did not fully
exhibit actual physical characteristics. Liu has explored the
curves of transient memristance with various initial phases
in [22], where the used memristor models are based on the
simple piece-wise linear and cubic mathematical models
rather than the actual physical model. Besides, the analytic
expressions of dynamic parameters were not derived in
[23], limiting the practical applications of the results.

To address the above limitations, Homotopy Analysis
Method (HAM) [23, 24] is employed in this paper to
analytically study the effects of the initial phase of sinus-
oidal input on memristor input-output dynamics. Without
sacrificing the generality, the widely used HP physical
model [1] coupling with the nonlinear window function
[25] is adopted for representing actual physical character-
istics. To be specific, firstly, HAM is used to solve the state
equation of HP physical model under different input initial
phases for obtaining approximate analytic solution of state
variable. This is because the state variable is a core pa-
rameter of HP memristor that controls the other dynamic
parameters, and hence the input-output dynamics. Then,
the solved state variable is employed to derive the approx-
imate analytic expressions of average state variable, tran-
sient memristance, average memristance, and I-V PHL.
Finally, based on the traditional I-V PHL area and the
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newly proposed Response Time Delay (difference) be-
tween Maximum Values of input and output (RDMV-IO),
we further reveal the intrinsic relationship between the
input initial phase and the memristor input-output dynam-
ics. All the solved parameters above have the advantages of
closed-form expression and symbolic computation due to
the HAM. To the best of the authors’ knowledge, this is the
first paper that HAM is applied to analyze the effects of the
initial phase of sinusoidal input on the memristor input-
output dynamics.

2. Study effects of initial phase on state variable x by
HAM

We first study effects of initial phase on state variable x by
HAM because x is the core parameter of memristor that
controls the other dynamic parameters (such as voltage VM ,
memristance RM). Based upon the original physical model
of HP memristor [1], the port equation, memristance, and
state equation of memristor with respect to input initial
phase can be expressed by

VMðt; �0Þ ¼ RMðt; �0Þ � IMðt; �0Þ ð1Þ

RMðt; �0Þ ¼ RONxðt; �0Þ þ ROFF ½1 � xðt; �0Þ�
¼ xNðt; �0Þð1 � �ÞRON þ �RON

ð2Þ

dxðt; �0Þ
dt

¼ �VRON

D2
IMðt; �0Þf½xðtÞ� ð3Þ

where the state variable xNðt; �0Þ ¼ wðt; �0Þ=D 2 ½0; 1� and
input current IMðt; �0Þ ¼ A sinð!t þ �0Þ, �0 is the initial
phase. For representing the actual physical characteristics,
1) the Joglekar window function (J-window) f½xðtÞ� ¼ 1 �
ð2x � 1Þ2P [25], where P here is a positive integer, was
introduced in (1), ensuring x 2 ½0; 1� and overcoming the
boundary effect; 2) P ¼ 2 was chosen in this work for the
effect of nonlinear ion drift in the doped layer [1]. For
clarity, all the definitions and values of physical parameters
of HP memristor and the input used in simulations are
summarized in Table I.

In our previous work, a HAM-based analytic modeling
methodology for memristor was proposed [26], in which
HAM was exploited for solving the state equation of
memristor to obtain the N-order analytic approximate solu-
tion xNðt; �0; ħÞ of state variable xðtÞ, where N 2 Z is the
approximation order (taking into account the approximate
accuracy and simulation efficiency, we chose N ¼ 3 in this
work), ħ 2 R is the convergence-control parameter that
used to accelerate the convergence for solving xNðt; �0; ħÞ.
The method for solving ħ will be explained later in this
section. Note the initial phase �0 of input is assumed to be
0° to simplify the analyses in [26] and original paper of HP
memristor [1], whereas in this work it is an unknown
whose effects on the memristor input-output dynamics will
be systematically studied.

Based on our modeling methodology, x3ðt; �0; ħÞ with
J-window (we chose N ¼ 3 and P ¼ 2, as explained above)
has the following analytic expression:

x3ðt; �0; ħÞ ¼ x0 þ
X3
m¼1

xmðt; �0; ħÞ

¼ 1 þ 1024�1 � 1024�1 cosð!tÞ
þ ð�3ħ2 þ 3ħ�3 þ 43008�2 þ 3�3Þ cosð�0Þ þ 512�1 cosð2�0Þ þ 14336�2 cosð3�0Þ=3
� ð�3ħ2 þ 3ħ�3 þ 43008�2 þ 3�3Þ cosð!t þ �0Þ � 1024�1 cosð!t þ 2�0Þ � 28672�2 cosð!t þ 3�0Þ
þ 14336�2 cosð2!t þ �0Þ þ 512�1 cosð2!t þ 2�0Þ þ 14336�2 cosð2!t þ 3�0Þ
� 14336�2 cosð3!t þ 3�0Þ=3

ð4Þ

where

�1 ¼ x0ðx0 � 1Þðħ þ 3=2Þðx02 � x0 þ 1=2Þ
� ðx0 � 1=2Þ3�2ħ2

ð5Þ

�2 ¼ x0ðx0 � 1Þðx02 � x0 þ 1=2Þðx0 � 1=2Þ2

� ðx04 � 2x0
3 þ 3x0

2=2 � x0=2 þ 1=28Þ�3ħ3
ð6Þ

�3 ¼ 16x0ðx0 � 1Þðx02 � x0 þ 1=2Þ�ħ ð7Þ
� ¼ �VRONA

D2!
ð8Þ

�1, �2, �3, and ξ are variables used for simplification of
Eq. (4).

The average N-order analytic approximate solution of
xNðt; �0; ħÞ over a cycle is given by

xNðt; �0; ħÞ ¼
R 2�=!
0

xNðt; �0; ħÞ dt
2�=!

ð9Þ

In Eq. (4), the convergence-control parameter ħ is
identified as a variable needed to be solved. To derive
the complete analytic expression of Eq. (4), the optimal ħ
corresponding to different �0, which used to accelerate the
convergence of approximation, is solved by minimizing the
discrete squared residual error Emð�0; ħÞ [23, 26]. The
solved ħ are listed in Table II.

As seen from Eq. (4), the initial phase has significant
effects on the mostly cosinoidal terms of state variable
expression, i.e., �0 controls the evolution of state variable.
To verify the validity of the above theoretical analysis, we
performed the analytic simulations based on Eqs. (4)–(9)
and compared it with numerical simulations. Note in this
work all the analytic simulations were implemented by
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using the Mathematica [27], while the numerical simula-
tions were performed by using the widely used fourth-order
Runge–Kutta method.

Fig. 1 shows the comparisons of evolutions of transi-
ent state variables x and the accompanying average state
variables �x in four normalized input cycles. For the con-
venience of comparisons, each cycle has the same initial
state variable x0. The cycles are drawn for 0°, 90°, 180°,
and 270° initial phases, respectively. Each initial phase
corresponds to a normalized cycle. The simulation results
in Fig. 1 show that:
1) our analytic simulations match the above theoretical

analysis and the numerical simulations well, denoting
the high accuracy of the solved analytic expression
Eqs. (4)–(9). The associated Maximum Relative Error
(MaxRE), Mean Relative Error (MRE), and Root
Mean Square Error (RMSE) between the analytic
and numerical simulation is 8.3%, 2.9%, and 0.013.

2) the variations in x and relevant �x are the largest for
�0 ¼ 0° and are the smallest for �0 ¼ 180°, because the
applied input current is firstly negative for �0 ¼ 180°,
resulting in x decreases from x0 ¼ 0:1 and then reaches
its boundary “0” that makes x ¼ 0 and stay unchanged.
While in case of 0°, the input is positive and moderate,
ensuring x operates in a normal range and does not
reach boundary “0” or “1”, i.e., x 2 ð0; 1Þ. The varia-
tions in x and relevant �x for 90° and 270° are mirror
symmetrical, because the inputs of memristor have the
opposite polarities but the same amplitudes.
To exploit the advantages of analytic analysis as men-

tioned in Introduction, in the following sections, we per-
formed simulations all based on our obtained analytic
expressions having high accuracy (such as Eqs. (4) and
(9), as shown from x and �x in Fig. 1), instead of the
numerical simulations.

3. Effects of initial phase on x-controlled dynamic
parameters

It is known from Section 2 that state variable x is the core
of HP memristor that controls the other dynamic parame-
ters. So that in this section, we studied the effects of initial
phase �0 on other dynamic parameters by using x and the
theoretical analyses in Section 2. This study is the founda-
tion of input-output dynamics analysis in Section 4 and
Section 5.

Table II. Values of �0 and the corresponding optimal ħ

�0 (°) 1 ħ 2 �0 (°) 1 ħ 2

0 −0.439475699 180 −0.420515742

45 −0.484572314 225 −0.466351321

90 −0.617281893 270 −0.617281893

135 −0.466351297 315 −0.838415877
1�0 is freely selected, depending on the initial phase range of the analyses.
2The optimal convergence-control parameter ħ can be solved by
minimizing discrete squared residual error Emð�0; ħÞ [23, 26].

Fig. 1. Comparisons of memristor state variable x and corresponding average state variable �x in 4 normalized cycles, under various initial phases. These
evolutions are simulated by using the obtained analytic expressions Eqs. (4)–(9) and numerical analyses, respectively. 2�=! is one cycle of the sinusoidal input
signal. Each �0 and correspondingly solved ħ are given in Table II. All the physical parameters of the HP memristor and the input parameters used in these
simulations are summarized in Table I.

Table I. Physical parameters of the HP memristor and the input
parameters used in simulations

Parameter Value Unit Definition

D� 10 � 10�9 m Thickness of the switching layer

wðt; �0Þ� ½0; 10�8� m Length of the doped layer

α� 1:6 � 102 - - Ratio of high resistance to low resistance

RON
� 102 Ω Low resistance (x ¼ 1)

�V
� 10�14 m2 s−1 V−1 Average ion mobility in small

electric field

x0 0.1 - - Initial state variable

R0 1:4 � 104 Ω Initial memristance

xðt; �0Þ ½0; 1� - -
Normalized state variable,

xðt; �0Þ ¼ wðt; �0Þ=D

A 40 � 10�6 A
Amplitude of the sinusoidal

input signal

VM ½�1;1� V Voltage across the memristor

IM ½�1;1� A Current through the memristor

RM ½0;1� Ω Memristance

ω ½0;1� rad/s
Angular frequency of the
sinusoidal input signal

T ½0;1� s
Cycle of the sinusoidal input

signal, T ¼ 2�=!

�The parameter is obtained from [1].
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Based on Eqs. (1), (2), and (4), we derive the
three-order analytic solution V3

Mðt; �0; ħÞ and R3
Mðt; �0; ħÞ

of output response VMðtÞ and memristance RMðtÞ,
respectively

V3
Mðt; �0; ħÞ ¼ IMðt; �0Þ � ½x3ðt; �0; ħÞRON

þ �ð1 � x3ðt; �0; ħÞÞRON �
ð10Þ

R3
Mðt; �0; ħÞ ¼ x3ðt; �0; ħÞRON

þ �ð1 � x3ðt; �0; ħÞÞRON

ð11Þ

Then, according to Eqs. (4) and (11), the average
R3
Mðt; �0; ħÞ over a cycle is given by

R3
Mðt; �0; ħÞ ¼

R 2�=!
0

R3
Mðt; �0; ħÞ dt
2�=!

ð12Þ

Fig. 2 shows the evolutions of the x-controlled dynam-
ic parameters of memristor, i.e., the output voltage V3

M

[see Fig. 2(a), (b), (c), and (d), based on Eqs. (4) and
(10)], memristance R3

M and average memristance R3
M

[see Fig. 2(e), (f ), (g), and (h), based on Eqs. (11), (12)],
and IM–VM PHL [see Fig. 2(i), ( j), (k), and (l), based on
Eqs. (4) and (10)], under four different initial phases. Note
that when the initial phase is 0° and 180°, the correspond-
ing dynamic parameters have the maximum and minimum
values, respectively, similar to x and �x in Fig. 1. We have
found that the initial phase �0 has significant effects on x
and �x from Fig. 1. Fig. 2 further illustrates that x under
different �0 directly controls the evolutions of the other
dynamic parameters. In other words, the effects of �0 are
transmitted to the other dynamic parameters through x.
Because of this, we come to a conclusion that the initial
phase �0 also has significant effects on the dynamic
parameters.

4. Effects of initial phase on IM –VM PHL area

The method that analyzes dynamics with dynamic parame-
ters presented in Section 3 is direct and effective. However,
the workload of this traditional method is too heavy, a
simple method that only use one parameter, referred to as
IM–VM PHL area, was proposed to represent memristor
input-output dynamics [28, 29]. So in this section, we
discussed the effects of initial phase on the IM–VM PHL
area.

According to the classical fingerprints of memristor
[29], the PHL area, defined as the area enclosed by the
closed IM–VM loop, is positively correlated with memristor
input-output dynamics [28]. For instance, as PHL area
tends to 0, the nonlinear input-output dynamics will dis-
appear, i.e., the memristor will convert to a traditional
linear resistor. The PHL area can be expressed by

S ¼
I

�

VN
MðtÞ dIMðtÞ ð13Þ

where Γ is the closed IM–VM loop as shown in Fig. 2(i),
( j), (k), and (l). Substituting the given IMðt; �0Þ into (13),
the analytic expression of PHL area is

Sð�0Þ ¼ 2

Z �=!

0

VN
Mðt; �0ÞA! cosð!tÞ dt ð14Þ

Combing Eqs. (1), (2), and (11), we can obtain the
analytical expression of Eq. (14). Then the quantitative
analysis in Fig. 3 shows that the PHL area increases first
and then decreases with the increasing initial phase, dem-
onstrating a U-shaped curve. This is because as �0 in-
creases in ½0�; 180��, the variation in x decreases due to
the input that is positive, leading to the decrease in varia-
tion in output and, thus, that in IM–VM PHL area, and vice

Fig. 2. Comparisons of the obtained dynamic parameters: output responses (a)–(d), memristances and average memristances (i)–(l), and IM–VM PHLs (i)–(l),
under initial phases of 0°, 90°, 180°, and 270°, respectively. All the simulation parameters are the same as those in Fig. 1.
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versa in ½180�; 360��. Since PHL area is positively corre-
lated with memristor input-output dynamics, the observa-
tion in Fig. 3 indicates �0 and the dynamics also have a
U-shaped relation. Note that when �0 is 0° (or 360°) and
180°, the corresponding PHL areas have the minimum and
maximum values, indicating the strongest and the weakest
input-output dynamics, respectively.

5. RDMV-IO

Although using the IM–VM PHL area to analyze the
memristor input-output dynamics is indeed a simpler meth-
od compared with using dynamic parameters, this method
is quite inconvenient and easy to cause error for practical
measurement (which we shall explain bellow). Thus, we
propose a novel method here for analyzing the input-output
dynamics by the Response Time Delay (difference) be-
tween Maximum Values of input and output in one cycle
(RDMV-IO), a graphical interpretation of RDMV-IO is
shown in Fig. 4(a).

Clearly, the measurement of RDMV-IO is more con-
venient than that of PHL area. This is because we only
need to measure the times corresponding to the maximum
values of the input and output, and then simply subtract
these two times to achieve RDMV-IO extraction. Never-
theless, measuring the PHL area requires not only real-time
measurement of a large number of transient values of
the input and output, but also the storage of these values.
Finally, mathematical software is needed to numerically
calculate the specific IM–VM PHL area. Therefore, ana-
lyzing input-output dynamics by RDMV-IO is an easy-
to-measure method.

To verify the validity of RDMV-IO, we performed the
simulation as shown in Fig. 4(b). It is clear from Fig. 4(b)
that as the initial phase increases, the normalized RDMV-
IO (jRDMV-IO=Tj � 100%) increases firstly and then de-
creases, similar to the PHL area-initial phase curve in
Fig. 3. This observation suggests that RDMV-IO, like
PHL area, is also positively correlated with the input-out-
put dynamics of memristor. Therefore, with the conven-
iences of RDMV-IO mentioned before, we can rapidly and
easily analyze the effects of initial phase on the input-
output dynamics of memristor. The physical mechanism
of RDMV-IO may be contributed to the moving time of
doped layer, microscopically, due to drift or diffusion time
of ion [30].

6. Discussion

After fabricating memristor, its input-output dynamics de-
pend only on input signals of applications. Therefore, the
analysis method in this paper can be employed for evalua-
tion and prediction of memristor performance, which is
particularly useful for applications that need to enhance
dynamics (the larger RDMV-IO the better) or to avoid the
disappearance of dynamics (i.e., RDMV-IO = 0).

It should be noted that, although our research subject
is the HP memristor with J-window under sinusoidal input
current, the analytic analysis method of the memristor
input-output dynamics can be easily extended to other
types of novel memory devices, window functions, and
inputs (e.g., triangular voltage), due to the generality of
HAM [23, 24] to solve Nonlinear Differential Algebraic
Equation regarding core parameter of device (such as the
state variable in HP memristor).

7. Conclusion

In summary, we have analytically analyzed the effects of
initial phase of sinusoidal input on memristor input-output
dynamics by employing the HAM and the newly proposed
RDMV-IO. We found that the input initial phase has
significant effects on the dynamics parameters. Base on
these results, we further reveal that the memristor input-
output dynamics are affected by the increasing input initial
phase, demonstrating a U-shaped relationship.
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