
LETTER

Efficient parallel semi-systolic array structure for multiplication
and squaring in GF(2m)

Atef Ibrahim1,2,3a), Usman Tariq1, Tariq Ahmad1, Ahmed Elmogy1,4, Yassine Bouteraa1,5, and Fayez Gebali3

Abstract In this paper, we develop an efficient parallel semi-systolic array
structure to concurrently compute multiplication and squaring operations
in the binary extension field, GF(2m), for efficient modular exponentia-
tions. The proposed array is well suited to VLSI implementation that it has
a regular structure as well as local communications between its processing
elements. The obtained results show that the proposed array structure
achieves a significant reduction in area-time (AT) complexity by at least
95.9% over the corresponding existing structures.
Keywords: semi-systolic arrays, modular multiplication, modular squar-
ing, hardware security, parallel processing
Classification: Integrated circuits

1. Introduction and related work

Finite field Modular exponentiation in GF(2m) is a critical
operation in cryptographic and error-correcting codes ap-
plications [1, 2]. This operation is mainly performed using
a sequence of finite field multiplication and squaring. Thus,
field multiplication can be considered the core operation for
the computation of modular exponentiation. As a result,
several field multiplier structures in GF(2m) are developed
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] to increase the
performance of this crucial operation. Unfortunately, these
structures impose a considerable area and time overhead,
which restricts them to use in many cryptographic appli-
cations, especially the resource-constrained ones.

The authors in [17] proposed a unified algorithm to
concurrently perform field multiplication and squaring in
GF(2m) based on the bipartite method. The proposed
algorithm is a regular iterative algorithm and enables the
parallel implementation of the two operations. The hard-
ware implementation of this algorithm has significantly
lower latency over the other hardware implementations
to perform both operations. Therefore, we will adopt this

algorithm in this research work to implement more efficient
parallel semi-systolic hardware structure.

Many systolic and semi-systolic array structures are
developed for simultaneously computing field multiplica-
tion and squaring in GF(2m). In [6], authors developed
a technique for combining both field multiplication and
squaring in a unified systolic array structure. This tech-
nique has the advantage of increasing the utilization of the
systolic array besides reducing its hardware overhead. In
[18], authors developed a unified parallel semi-systolic
array structure based on the Montgomery multiplication
algorithm in GF(2m) to concurrently compute field multi-
plication and squaring. In [19], authors developed a parallel
systolic array structure based on the unified algorithm
described in [17]. They proved that it has a lower latency
and critical path delay over the related systolic structures.

In this paper, we develop an efficient parallel semi-
systolic array structure to concurrently compute multipli-
cation and squaring in GF(2m) based on the bipartite multi-
plication method described in [17]. Comparing to the most
recent related work of [6, 18, 19], the developed array
structure has a significant reduction in both area and AT
complexities. This recommends the developed array struc-
ture for use in various resource-constrained cryptographic
applications.

The paper is organized as follows: Section 2 provides
a brief discussion about the adopted unified multiplication-
squaring algorithm. Section 3 describes the developed par-
allel semi-systolic array structure. Section 4 compares the
area and time complexities of the developed array structure
with the related structures. Section 5 concludes this work.

2. Unified multiplication and squaring algorithm in
GF(2m)

In this section, we briefly discuss the unified modular
multiplication and squaring algorithm over GF(2m) as the
details of this algorithm are previously given in [17, 19].

Suppose that FðxÞ be the irreducible polynomial used
to generate the finite field over GF(2m). Also, let CðxÞ and
DðxÞ be two arbitrary polynomial elements in GFð2mÞ. The
polynomials of FðxÞ, CðxÞ and DðxÞ can be represented in
the polynomial form as:

FðxÞ ¼
Xm
j¼0

fjx
j ð1ÞDOI: 10.1587/elex.16.20190268

Received April 21, 2019
Accepted May 9, 2019
Publicized May 30, 2019
Copyedited June 25, 2019

1College of Computer Engineering and Sciences, Prince
Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
2Microelectronics Department, Electronics Research Institute,
Cairo, Egypt
3ECE Department, University of Victoria, Victoria, BC,
Canada
4Computers & Control Engineering Department, Tanta
University, Egypt
5CEM Lab, ENIS & Digital Research Centre of Sfax,
University of Sfax, Tunisia
a) attif_ali2002@yahoo.com

IEICE Electronics Express, Vol.16, No.12, 1–6

1

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers



CðxÞ ¼
Xm�1
j¼0

cjx
j ð2Þ

DðxÞ ¼
Xm�1
j¼0

djx
j ð3Þ

where coefficients fj; cj; dj 2 f0; 1g.
Since x is a root of FðxÞ, xm modFðxÞ and

xmþ1 modFðxÞ can be defined as follows:

xm modFðxÞ ¼
Xm�1
j¼0

fjx
j ð4Þ

xmþ1 modFðxÞ ¼
Xm�1
j¼1

ðfm�1fj þ fj�1Þxj þ fm�1f0

ffi F 0ðxÞ ¼
Xm�1
j¼0

f0
jx

j ð5Þ

Let k ¼ bm=2c, l ¼ dm=2e; and assume that F 0ðxÞ is avail-
able in advance. The modular multiplication and squaring
can be given as:

PðxÞ ¼ CðxÞDðxÞmodFðxÞ

¼
Xm�1
i¼0

diCðxÞxi modFðxÞ

¼
 Xl�1

i¼0
d2iCðxÞx2i þ x

Xk�1
i¼0

d2iþ1CðxÞx2i
!
modFðxÞ ð6Þ

SðxÞ ¼ CðxÞCðxÞmodFðxÞ

¼
Xm�1
i¼0

ciCðxÞxi modFðxÞ

¼
 Xl�1

i¼0
c2iCðxÞx2i þ x

Xk�1
i¼0

c2iþ1CðxÞx2i
!
modFðxÞ ð7Þ

Equations (6) and (7) show that each of PðxÞ and SðxÞ
can be separated into two parts and can be expressed as
follows:

PðxÞ ¼ ðHðxÞ þ xGðxÞÞmodFðxÞ ð8Þ
SðxÞ ¼ ðVðxÞ þ xUðxÞÞmodFðxÞ ð9Þ

where,

HðxÞ ¼
Xl�1
i¼0

d2iCðxÞx2i modFðxÞ ð10Þ

GðxÞ ¼
Xk�1
i¼0

d2iþ1CðxÞx2i modFðxÞ ð11Þ

VðxÞ ¼
Xl�1
i¼0

c2iCðxÞx2i modFðxÞ ð12Þ

UðxÞ ¼
Xk�1
i¼0

c2iþ1CðxÞx2i modFðxÞ ð13Þ

From Eqs. (10), (11), (12), and (13), we can notice that
the common term CðxÞx2i modFðxÞ is required to compute
HðxÞ; GðxÞ; VðxÞ; UðxÞ. We define CiðxÞ ¼ Ci�1ðxÞx2 mod
FðxÞ where C0ðxÞ ¼ CðxÞ and 0 � i � l � 1. Then, based
on Eqs. (4) and (5), CiðxÞ can be defined as:

CiðxÞ ¼ Ci�1ðxÞx2 modFðxÞ

¼
Xm�1
j¼0

ci�1j xjþ2 modFðxÞ

¼
Xm�1
j¼0

ðci�1j�2 þ ci�1m�2fj þ ci�1m�1f
0Þxj ð14Þ

where C0 ¼ C, ci�1�2 ¼ ci�1�1 ¼ 0, and 1 � i � l � 1.
From Eq. (14), The coefficient of CiðxÞ, cij, can be

expressed as:

cij ¼ ci�1j�2 þ ci�1m�2fj þ ci�1m�1f
0 ð15Þ

where c0j ¼ cj, ci�1�2 ¼ ci�1�1 ¼ 0, and 1 � i � l � 1.
Using (15), we can represent HðxÞ; GðxÞ; VðxÞ; UðxÞ as

follows:

HðxÞ ¼
Xl
i¼1

d2ði�1ÞCi�1ðxÞ ð16Þ

GðxÞ ¼
Xk
i¼1

d2i�1Ci�1ðxÞ ð17Þ

VðxÞ ¼
Xl
i¼1

c2ði�1ÞCi�1ðxÞ ð18Þ

UðxÞ ¼
Xk
i¼1

c2i�1Ci�1ðxÞ ð19Þ

We can formulate the recurrence equations of HðxÞ;
GðxÞ; VðxÞ; UðxÞ as follows:

HiðxÞ ¼ Hi�1ðxÞ þ d2ði�1ÞCi�1ðxÞ ð20Þ
GiðxÞ ¼ Gi�1ðxÞ þ d2i�1Ci�1ðxÞ ð21Þ
V iðxÞ ¼ V i�1ðxÞ þ c2ði�1ÞCi�1ðxÞ ð22Þ
UiðxÞ ¼ Ui�1ðxÞ þ c2i�1Ci�1ðxÞ ð23Þ

where H0ðxÞ ¼ G0ðxÞ ¼ V 0ðxÞ ¼ U0ðxÞ ¼ 0, HiðxÞ ¼Pm�1
j¼0 hijx

j, GiðxÞ ¼Pm�1
j¼0 gijx

j, V iðxÞ ¼Pm�1
j¼0 vijx

j,
UiðxÞ ¼Pm�1

j¼0 uijx
j are the ith intermediate results.

The coefficients of HiðxÞ; GiðxÞ; V iðxÞ; U iðxÞ can be
represented recursively at step i as follows:

hij ¼ hi�1j þ d2ði�1Þci�1j ; for 1 � i � l ð24Þ
gij ¼ gi�1j þ d2i�1ci�1j ; for 1 � i � k ð25Þ
vij ¼ vi�1j þ c2ði�1Þci�1j ; for 1 � i � l ð26Þ
uij ¼ ui�1j þ c2i�1ci�1j ; for 1 � i � k ð27Þ

where h0j ¼ g0j ¼ v0j ¼ u0j ¼ 0 and 0 � j � m � 1. There is
no data dependency between the equations from (24) to
(27) and thus they can be executed simultaneously.

We still need to compute PðxÞ and SðxÞ to obtain the
results of modular multiplication and squaring, recursively.
Based on Eqs. (8) and (9), PðxÞ and SðxÞ can be computed
as follows:

PðxÞ ¼ ðHlðxÞ þ xGkðxÞÞmodFðxÞ

¼
Xm�1
j¼0

ðhlj þ gkm�1fj þ gkj�1Þxj ð28Þ

IEICE Electronics Express, Vol.16, No.12, 1–6

2



SðxÞ ¼ ðV lðxÞ þ xUkðxÞÞmodFðxÞ

¼
Xm�1
j¼0

ðvlj þ ukm�1fj þ ukj�1Þxj ð29Þ

where gk�1 ¼ uk�1 ¼ 0.
The coefficients of PðxÞ, SðxÞ can be calculated as

follows:
pj ¼ hlj þ gkm�1fj þ gkj�1 ð30Þ
sj ¼ vlj þ ukm�1fj þ ukj�1 ð31Þ

where gk�1 ¼ uk�1 ¼ 0 and 0 � j � m � 1.

3. Proposed semi-systolic array architecture of the
unified algorithm

We applied the methodology previously described by the
first and last authors in [20, 21, 22, 23, 24] to extract the
proposed semi-systolic array structure. The methodology
can be applied in three steps as follows: 1) getting the data
dependency graph (DG) for the specified algorithm. 2)
allocating a time value to each node in the DG using a
specific timing or scheduling function. 3) mapping several
nodes of the DG to a processing element (PE) to form the
systolic/semi-systolic array [20, 25, 26, 27, 28, 29, 30].

The DG of the unified multiplication and squaring
algorithm over GFð2mÞ can be extracted from the recursive
Eqs. (15), (24), (25), (26), (27), (30), and (31). The ex-
tracted DG based on these equations is shown in Fig. 1.
The DG is represented in the two-dimensional integer
domain D due to the equations have two indices i and j.
The indices i, j indicates rows and columns, respectively.
The algorithm operations are represented by the circle
nodes. The DG is divided into two parts: the upper part
and the lower part. The upper part consists of the upper l

rows of the DG (rows with the light red nodes) and it
computes the coefficients of C, H, G, V, U according to
Eqs. (15), (24), (25), (26), (27), respectively. The lower
part consists of the last row of the DG (row with the brown
nodes) and it computes the coefficients of P and S accord-
ing to Eqs. (30), and (31), respectively. In the upper part of
the DG, the calculated intermediate results of hij, g

i
j, v

i
j and

uij besides the broadcasted inputs of fj and f0
j are indi-

cated by the vertical lines. The calculated intermediate
results of cij are indicated by the red lines. The input bits
c2ði�1Þ, c2i�1, d2ði�1Þ, d2i�1, along with the computed partial
bits ci�1m�2, c

i�1
m�1 are transmitted horizontally to all nodes in

the upper part of the DG. The initial input bits c0j, h
0
j , g

0
j,

v0j , u
0
j, c

0
j, fj and f0

j are fed to the nodes at the top of the
DG.

The outputs resulted from the upper part of the DG hlj,
gkj, v

l
j, u

k
j beside the broadcasted bits of fj are fed as input

to the lower part (the last row), as shown in Fig. 1, to
compute the output bits of pj and sj.

After applying the methodology formerly described in
[20, 23, 24, 25, 26], we get the scheduling vector S ¼ ½1 0�
and the projection vector P ¼ ½0 1�T to assign node timing
to the DG and map several nodes of the DG to a specific PE
cell, respectively. The resulted node timing of the DG is
shown in Fig. 2.

From Fig. 2, we can notice that the initial inputs of h0j,
g0j, v

0
j , u

0
j, c

0
j, and f, f0 are fed in parallel at the first time

step and the outputs of pj, sj are also available in parallel at
the last time step l þ 1 ¼ dm=2e þ 1. Fig. 3 displays the
produced semi-systolic array architecture resulted from
applying the projection vector P ¼ ½0 1�T to the DG. It
consists of m (PEj) PE cells and m (PSj) PE cells. PEj cells
compute hlj, g

k
j, v

l
j, u

k
j, which are used along with fj as

inputs to the PSj cells to compute pj and sj as shown in
Fig. 3.

Fig. 1. DG of the unified multiplication-squaring algorithm for m ¼ 5 Fig. 2. DG Node Timing. Each row assigned different time value.

IEICE Electronics Express, Vol.16, No.12, 1–6

3



As Fig. 3 displays, input bits f, f0, and c0j are allocated
to each PEj cell and the resulted intermediate bits of C, are
pipelined between the PEj cells. Since the inputs of H (h0j),
G (g0j), V (v0j), U (u0j) are initialized with zero values, they
can be created by resetting the corresponding D-Latches.
The produced intermediate bits of hij, g

i
j, v

i
j, u

i
j are updated

internally within each PEj cell. Input bits c2i�2, c2i�1, d2i�2,
d2i�1, in addition to the resulted intermediate bits ci�1m�2 and
ci�1m�1 (produced from PEm�2 and PEm�2 cells, respectively)
are transferred to all PEj cells. The output bits of H, hlj, and
V, vlj, resulted from PEj cells are produced in parallel after
l ¼ dm=2e time steps, while the output bits of G, gkj, and U,
ukj, are produced in parallel after k ¼ bm=2c time steps. The
Tri-State buffers shown in Fig. 4 will control this timing
process. The output bits of P, pj, and S, sj, resulted from
PSj cells are produced in parallel after l þ 1 ¼ dm=2e þ 1

time steps. Therefore, the total time required to get the final
results is equal to dm=2e þ 1.

Fig. 4 displays the hardware details of each PEj cell. To
insure that the initial inputs of H, h0j , G, g

0
j , V, v

0
j , and U, u

0
j,

assigned zero values, the corresponding D-Latches (Dh, Dg,
Dv, and Du), in each PEj cell, should be cleared before the
iterations begin. It is important to notice that signals ci�1j

and ci�1j�1 shown in Fig. 4, represents the ci�1m�1 and ci�1m�2
input in the last PEm�1 cell as indicated in Fig. 3.

Fig. 5 displays the hardware details of each PSj cell.
Inputs fj, hlj, vlj, gkj�1, ukj�1, gkm�1, ukm�1 are used to
compute the multiplication and squaring outputs pj and
sj, respectively. fj, hlj, v

l
j, g

k
j�1, u

k
j�1 inputs are delayed by

one clock cycle through the corresponding D-Latches in-
side the PSj cell, while gkm�1 and ukm�1 inputs are previ-
ously delayed through the D-Latches (Dg and Du FFs)
indicated in Fig. 3.

The following summarizes the operation of the ex-
tracted semi-systolic array architecture.
1) At the first clock cycle i ¼ 1, Muxes inside PEj cells

are activated (Mc ¼ 1) to transfer the input bits of C,
c0j�1 and c0j. Also, input bits c0, c1, d0, d1 alongside
the bits c0m�2 and c0m�1 are transferred to all PEj cells.

2) At clock cycles 1 < i � l, Muxes inside PEj cells
transfer the intermediate bits of ci�1j�1 and c

i�1
j (Mc ¼ 0)

as pointed out in Fig. 3. ci�1j�1 signal passes to the next
PEj cell and ci�1j signal also passes to the next cell
bedside used inside the current cell to compute the
new intermediate values of hij, g

i
j, v

i
j and uij as shown

in Fig. 3. Also, input bits c2i�2, c2i�1, d2i�2, and d2i�1
alongside the bits ci�1m�2, c

i�1
m�1 are transferred to all PEj

cells, one bit at each clock cycle.
3) At clock cycle i ¼ k ¼ bm=2c, The Tri-State buffers

Tg and Tu passes the produced values of gkj and ukj.
4) At clock cycle i ¼ l ¼ dm=2e, The Tri-State buffers

Th and Tv pass the resulted values of hlj and vlj.
5) At the last clock cycle i ¼ l þ 1 ¼ dm=2e þ 1, the

inputs fj, hlj, v
l
j, g

k
j�1, u

k
j�1, g

k
m�1, u

k
m�1 of the PSj

cells will be used to compute the output bits of P, pj,
and S, sj, in parallel as shown in Fig. 3.

4. Complexity analysis

We used NanGate (15 nm, 0.8V) Open Cell Library to get
the area and worst-case intrinsic delay of the basic gates, 2-
to-1 MUX, and Latch. The worst-case intrinsic delay is
attained pertaining to the unit-derive strength of the open
cell library. The estimated area and delay for the basic cells
are given in Table I. The area of the basic logic cells is
given in terms of the 2-input NAND gate. The area and
delay complexities of the presented and related most recent
parallel systolic/semi-systolic designs [6, 18, 19] are given
in Tables II and III. We used the data in Table I to calculate

Fig. 3. Semi-systolic array architecture of the unified multiplier-squarer
algorithm.

Fig. 4. PEj cell. D-Latches are indicated with the square boxes.

Fig. 5. PSj cell. D-Latches are indicated with the square boxes.

IEICE Electronics Express, Vol.16, No.12, 1–6

4



the total gate count (TGC) and total delay (TD) of the
developed and compared parallel systolic/semi-systolic
array structures in terms of the field size m as shown in
Tables II and III, respectively. TD is obtained from the
product of latency and the critical path delay (CPD). TA,
TX , and TMUX in Table III denote the delay of the 2-input
AND cell, the 2-input XOR cell, and the 2-to-1 MUX,
respectively. Table III also shows the Area-Time (AT)
complexity of each array structure. It is calculated for each
array by multiplying the corresponding TGC and TD.

From Table II, we notice that the compared array
structures have area complexity (TGC) of Oðm2Þ, while
the proposed array structure has area complexity of OðmÞ.
From Table III, we notice that the compared array structures
have AT complexity of Oðm3Þ, while the proposed array
structure has AT complexity of Oðm2Þ. This means that the
proposed array structure has a significant reduction in area
and AT complexities over the compared array structures.

Based on the analytical results gained in Tables II and
III, we can quantify the amount of area (A), computation
time (T), and AT for m ¼ 233 and m ¼ 409 as shown in
Table IV. The attained results indicate that the proposed
array structure has AT improvement over the compared
ones by at least 95.9%.

5. Summary and conclusion

This study proposes an efficient parallel semi-systolic array
structure to concurrently compute the unified multiplication
and squaring algorithm in GF(2m) for efficient modular
exponentiations. The developed array structure has a reg-
ular structure and local communications between process-
ing elements that make it more suited to VLSI implemen-
tation. The obtained results indicate that the proposed array
structure has a significant improvement in the area and AT
complexity over the most recent related work. This nom-
inates the proposed design for use in various resource-
constrained applications for security purposes.

Acknowledgments

The authors would like to acknowledge the support of the
Deanship of Scientific Research at Prince Sattam Bin
Abdulaziz University under the research project # 2019/
01/10761.

References

[1] R. E. Blahut, et al.: Handbook of Applied Cryptography (CRC
Press, Boca Raton, FL, 1996) 816.

[2] R. E. Blahut: Theory and Practice of Error Control Codes
(Addison-Wesley, Reading, MA, 1983) 500.

[3] C. W. Chiou, et al.: “Concurrent error detection in Montgomery
multiplication over gf(2m),” IEICE Trans. Fundamentals E89-A
(2006) 566 (DOI: 10.1093/ietfec/e89-a.2.566).

[4] W. T. Huang, et al.: “Concurrent error detection and correction in a
polynomial basis multiplier over gf(2m),” IET Inf. Secur. 4 (2010)
111 (DOI: 10.1049/iet-ifs.2009.0160).

[5] K. W. Kim and J. C. Jeon: “Polynomial basis multiplier using
cellular systolic architecture,” IETE J. Res. 60 (2014) 194 (DOI:
10.1080/03772063.2014.914699).

[6] S. Choi and K. Lee: “Efficient systolic modular multiplier/squarer
for fast exponentiation over gf(2m),” IEICE Electron. Express 12
(2015) 20150222 (DOI: 10.1587/elex.12.20150222).

[7] K. W. Kim and J. C. Jeon: “A semi-systolic Montgomery
multiplier over gf(2m),” IEICE Electron. Express 12 (2015)
20150769 (DOI: 10.1587/elex.12.20150769).

[8] P. A. Scott, et al.: “Architectures for exponentiation in gf(2m),”
IEEE J. Sel. Areas Commun. 6 (1988) 578 (DOI: 10.1109/49.
1927).

[9] K. J. Lee and K. Y. Yoo: “Linear systolic multiplier/squarer for fast
exponentiation,” Inf. Process. Lett. 76 (2000) 105 (DOI: 10.1016/
S0020-0190(00)00131-9).

[10] J.-C. Ha and S.-J. Moon: “A common-multiplicand method to the
Montgomery algorithm for speeding up exponentiation,” Inf. Proc-
ess. Lett. 66 (1998) 105 (DOI: 10.1016/S0020-0190(98)00031-3).

Table I. Area and delay of basic cells in terms of 2-input NAND gate.

INV TSB� AND XOR MUX Latch

Area (2-input
NAND)

0.6 0.8 1.2 2.5 2.5 2.8

Delay (ps) 5.8 7.9 11.3 12.7 12.4 16.6

(�) TSB represents the Tri-State buffer.

Table II. Area of various parallel systolic/semi-systolic array structures
in terms of the field size m.

Design TSB AND XOR MUX Latch TGC

Choi [6] 0 3m2 3m2 0 10m2 104:1m2

Kim [18] 0 F1ð�Þ F2ð�Þ 0 F3ð�Þ F4ð�Þ

Kim [19] 0 F5ð�Þ F6ð�Þ 0 F7ð�Þ F8ð�Þ

Proposed 4m 8m 10m 2m 11m 90:1m

(�) F1 ¼ 1:5m2 þ 1:5m, F2 ¼ 1:5m2 þ 3:5m, F3 ¼ 2m2 þ 4m,
F4 ¼ 14:15m2 þ 27:75m, F5 ¼ 3m2 þ 2m, F6 ¼ 3m2 þ 4m,
F7 ¼ 9m2 þ 3m, F8 ¼ 49:8m2 þ 25:9m

Table III. Delay of various parallel systolic/semi-systolic array struc-
tures in terms of the field size m.

Design Latency CPD TD AT

Choi [6] 3m TA þ TX 72m 7495:2m3

Kim [18] 0:5m þ 2:5 TA þ TX 12m þ 60 AT1ð�Þ

Kim [19] 1:5m þ 1 TA þ 2TX TD1ð��Þ AT2ð�Þ

Proposed dm=2e þ 1 TA þ 2TX TD2ð��Þ AT3ð�Þ

(�) AT1 ¼ 170m3 þ 1182m2 þ 1665m,
AT2 ¼ 2765m3 þ 3266m2 þ 951m, AT3 ¼ 3306mðdm=2e þ 1Þ
(��) TD1 ¼ 55:53m þ 36:7, TD2 ¼ 36:7ðdm=2e þ 1Þ

Table IV. Calculated area and time of various systolic/semi-systolic
arrays for m ¼ 233 and m ¼ 409.

Design m
A

[Kgates]
T
[ns]

AT % AT

Choi [6] 233 5,651.48 16.78 94,809.31 99.9

409 17,413.95 29.45 512,806.06 99.9

Kim [18] 233 774.66 2.86 2,212.41 95.9

409 2,378.38 4.97 11,815.77 97.6

Kim [19] 233 2,709.63 12.98 35,157.92 99.7

409 8341.19 22.75 189,749.24 99.8

Proposed 233 20.9 4.3 90.9 -

409 36.85 7.56 278.60 -

IEICE Electronics Express, Vol.16, No.12, 1–6

5

http://dx.doi.org/10.1093/ietfec/e89-a.2.566
http://dx.doi.org/10.1049/iet-ifs.2009.0160
http://dx.doi.org/10.1080/03772063.2014.914699
http://dx.doi.org/10.1080/03772063.2014.914699
http://dx.doi.org/10.1587/elex.12.20150222
http://dx.doi.org/10.1587/elex.12.20150769
http://dx.doi.org/10.1109/49.1927
http://dx.doi.org/10.1109/49.1927
http://dx.doi.org/10.1016/S0020-0190(00)00131-9
http://dx.doi.org/10.1016/S0020-0190(00)00131-9
http://dx.doi.org/10.1016/S0020-0190(98)00031-3


[11] Y. Y. Hua, et al.: “Low space complexity digit-serial dual basis
systolic multiplier over gf(2m) using Hankel matrix and Karatsuba
algorithm,” IET Inf. Secur. 7 (2013) 75 (DOI: 10.1049/iet-ifs.
2012.0227).

[12] C. C. Chen, et al.: “Scalable and systolic Montgomery multipliers
over GF(2m),” IEICE Trans. Fundamentals E91-A (2008) 1763
(DOI: 10.1093/ietfec/e91-a.7.1763).

[13] S. Kumar, et al.: “Optimum digit serial multipliers for curve-based
cryptography,” IEEE Trans. Comput. 55 (2006) 1306 (DOI: 10.
1109/TC.2006.165).

[14] C. H. Kim, et al.: “A digit-serial multiplier for finite field GF(2m),”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13 (2005) 476
(DOI: 10.1109/TVLSI.2004.842923).

[15] S. Bayat-Sarmadi, et al.: “Dual basis super-serial multipliers for
secure applications and lightweight cryptographic architectures,”
IEEE Trans. Circuits Syst. II, Exp. Briefs 61 (2014) 125 (DOI: 10.
1109/TCSII.2013.2291075).

[16] C. Y. Lee, et al.: “New digit-serial three-operand multiplier over
binary extension fields for high-performance applications,” 2nd

IEEE International Conference on Computational Intelligence and
Applications (ICCIA) (2017) 17415249 (DOI: 10.1109/CIAPP.
2017.8167267).

[17] K. W. Kim, et al.: “Efficient combined algorithm for multiplication
and squaring for fast exponentiation over finite fields gf(2m),” 7th
International Conference on Emerging Databases (EDB) (2017) 50
(DOI: 10.1007/978-981-10-6520-0_6).

[18] K. W. Kim and J. D. Lee: “Efficient unified semi-systolic arrays for
multiplication and squaring over gf(2m),” IEICE Electron. Express
14 (2017) 20170458 (DOI: 10.1587/elex.14.20170458).

[19] K. W. Kim and S. H. Kim: “Efficient bit-parallel systolic
architecture for multiplication and squaring over gf(2m),” IEICE
Electron. Express 15 (2018) 20171195 (DOI: 10.1587/elex.14.
20171195).

[20] F. Gebali: Algorithms and Parallel Computers (John Wiley, New
York, USA, 2011) 364.

[21] A. Ibrahim, et al.: “Processor array architectures for scalable
radix 4 Montgomery modular multiplication algorithm,” IEEE
Trans. Parallel Distrib. Syst. 22 (2011) 1142 (DOI: 10.1109/TPDS.
2010.196).

[22] F. Gebali and A. Ibrahim: “Efficient scalable serial multiplier over
gf(2m) based on trinomial,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 23 (2015) 2322 (DOI: 10.1109/TVLSI.2014.
2359113).

[23] A. Ibrahim and F. Gebali: “Low power semi-systolic architectures
for polynomial-basis multiplication over gf(2m) using progressive
multiplier reduction,” J. Signal Process. Syst. 82 (2016) 331 (DOI:
10.1007/s11265-015-1000-x).

[24] A. Ibrahim, et al.: “Systolic array architectures for sunar-Koc
optimal normal basis type II multiplier,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 23 (2015) 2090 (DOI: 10.1109/TVLSI.
2014.2358196).

[25] A. Ibrahim, et al.: “High-performance, low-power architecture for
scalable radix 2 Montgomery modular multiplication algorithm,”
Can. J. Electr. Comput. Eng. 34 (2009) 152 (DOI: 10.1109/CJECE.
2009.5599422).

[26] A. Ibrahim and F. Gebali: “Scalable and unified digit-serial
processor array architecture for multiplication and inversion over
gf(2m),” IEEE Trans. Circuits Syst. I, Reg. Papers 64 (2017) 2894
(DOI: 10.1109/TCSI.2017.2691353).

[27] A. Ibrahim, et al.: “New systolic array architecture for finite field
division,” IEICE Electron. Express 15 (2018) 20180255 (DOI:
10.1587/elex.15.20180255).

[28] A. Ibrahim: “Scalable digit-serial processor array architecture
for finite field division,” Microelectron. J. 85 (2019) 83 (DOI: 10.
1016/j.mejo.2019.01.011).

[29] A. Ibrahim, et al.: “Unified systolic array architecture for field
multiplication and inversion over gf(2m),” Comput. Electr. Eng. 61
(2017) 104 (DOI: 10.1016/j.compeleceng.2017.06.014).

[30] A. Ibrahim, et al.: “New systolic array architecture for finite field
inversion,” Can. J. Electr. Comput. Eng. 40 (2017) 23 (DOI: 10.
1109/CJECE.2016.2638962).

IEICE Electronics Express, Vol.16, No.12, 1–6

6

http://dx.doi.org/10.1049/iet-ifs.2012.0227
http://dx.doi.org/10.1049/iet-ifs.2012.0227
http://dx.doi.org/10.1093/ietfec/e91-a.7.1763
http://dx.doi.org/10.1109/TC.2006.165
http://dx.doi.org/10.1109/TC.2006.165
http://dx.doi.org/10.1109/TVLSI.2004.842923
http://dx.doi.org/10.1109/TCSII.2013.2291075
http://dx.doi.org/10.1109/TCSII.2013.2291075
http://dx.doi.org/10.1109/CIAPP.2017.8167267
http://dx.doi.org/10.1109/CIAPP.2017.8167267
http://dx.doi.org/10.1007/978-981-10-6520-0_6
http://dx.doi.org/10.1587/elex.14.20170458
http://dx.doi.org/10.1587/elex.14.20171195
http://dx.doi.org/10.1587/elex.14.20171195
http://dx.doi.org/10.1109/TPDS.2010.196
http://dx.doi.org/10.1109/TPDS.2010.196
http://dx.doi.org/10.1109/TVLSI.2014.2359113
http://dx.doi.org/10.1109/TVLSI.2014.2359113
http://dx.doi.org/10.1007/s11265-015-1000-x
http://dx.doi.org/10.1007/s11265-015-1000-x
http://dx.doi.org/10.1109/TVLSI.2014.2358196
http://dx.doi.org/10.1109/TVLSI.2014.2358196
http://dx.doi.org/10.1109/CJECE.2009.5599422
http://dx.doi.org/10.1109/CJECE.2009.5599422
http://dx.doi.org/10.1109/TCSI.2017.2691353
http://dx.doi.org/10.1587/elex.15.20180255
http://dx.doi.org/10.1587/elex.15.20180255
http://dx.doi.org/10.1016/j.mejo.2019.01.011
http://dx.doi.org/10.1016/j.mejo.2019.01.011
http://dx.doi.org/10.1016/j.compeleceng.2017.06.014
http://dx.doi.org/10.1109/CJECE.2016.2638962
http://dx.doi.org/10.1109/CJECE.2016.2638962

