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Enhanced voltage swing of rapid-single-flux-quantum distributed
output amplifier equipped with double-stack superconducting

quantum interference devices

Yoshinao Mizugakila), Komei Higuchil, and Hiroshi Shimada'

Abstract We report the enhanced voltage swing of a rapid-single-flux-
quantum (RSFQ) distributed amplifier by replacing a single superconducting
quantum interference device (SQUID) with a double-stack-SQUID (DSS).
A DSS is composed of two stacked 2-junction SQUIDs sharing one sensing
inductor. Thanks to its stack structure, a DSS is expected to generate twofold
output voltage. We have designed a 12-stage RSFQ distributed amplifier
equipped with DSSs. The maximum output voltage swing reached 10.2 mV
in simulation. Test chips were fabricated using a 25-pA/um? Nb integra-
tion process. In measurements, a test chip was cooled in a liquid helium bath.
The experimental output voltage swing was up to 8.34mV.
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1. Introduction

The development of superconducting digital circuits has
been accelerated for the last three decades [1, 2, 3, 4, 5, 6,
7, 8,9, 10, 11, 12, 13, 14, 15]. Among several super-
conducting circuit configurations, the rapid single-flux-
quantum (RSFQ) technology, where the existence and
absence of a single flux quantum (SFQ) in a superconduct-
ing loop represent the binary digital states of “1” and “0”,
is the most developed and widely used [1]. One example is
a 33 GHz-clock RAM-embedded microprocessor compris-
ing 10,603 Nb Josephson junctions [16].

An SFQ signal propagating on a Josephson transmis-
sion line (JTL) has a pulse shape. To make a data link from
superconducting RSFQ digital IC to room-temperature
electronics, digital states represented by SFQ pulses should
be converted to digital states in voltage levels. The most
common device for SFQ—voltage conversion is an SFQ-to-
DC (s/d) converter, which converts an SFQ pulse to a non-
return-to-zero (NRZ) voltage signal [1]. One drawback of
an s/d converter is its small swing of output voltage. It is
on the order of 100 uV for Nb Josephson junctions, for
which a pre-amplifier is necessary to make a data link to
room-temperature electronics. As a result, the bandwidth is
often limited by that of a pre-amplifier.
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To lift limits on the bandwidths on SFQ-voltage con-
version, many groups have developed on-chip RSFQ out-
put amplifiers that realize voltage swings beyond 1mV.
On-chip RSFQ output amplifiers are classified in terms of
their biasing schemes. A Suzuki stack [17, 18] and a four-
junction loop (4JL) gate [19, 20] are AC biased, whereas a
hybrid unlatching flip-flop logic element (HUFFLE) gate
[21, 22], a superconducting quantum interference device
(SQUID) array [23, 24], and a distributed single-SQUID
amplifier [25] are DC biased. In this paper, we focus on
a DC-biased distributed amplifier. A decade ago, a 12-stage
distributed single-SQUID amplifier realized a data link
bandwidth as wide as 10 Gbps, while its voltage swing
was limited less than 2mV [25].

In our previous work, we enhanced the voltage swing of
a distributed amplifier by replacing a single-SQUID with a
double-stack-SQUID (DSS) [26]. A DSS is a 4-junction
SQUID with two superconducting loops [27]. In other
words, it is composed of two stacked SQUIDs sharing one
sensing inductor. Thanks to its stack structure, a DSS is
expected to generate twofold output voltage [27, 28]. Figs. 1
and 2 illustrate the configuration of a distributed DSS am-
plifier and the equivalent circuit of one stage, respectively. Its
operation sequence is explained as follows. The input SFQ
pulses are transferred alternatively to either “set” or “reset”
JTL via a toggle flip-flop (TFF). Then, they set/reset the
storage loop of each stage and switch on/off the DSS, re-
sulting in an NRZ output signal. Numerical simulation dem-
onstrated that a 4-stage distributed DSS amplifier generated a
204% voltage swing in comparison with a 4-stage distributed
single-SQUID amplifier. We designed and fabricated a
4-stage distributed DSS amplifier using a Nb integration
technology. Low-speed test results demonstrated correct
operation with the maximum voltage swing of 2.93 mV [26].

In this paper, we describe our design and operation of a
12-stage distributed DSS amplifier.

2. Design and fabrication of RSFQ distributed output
amplifier equipped with double-stack-SQUIDs

In designing a 12-stage distributed DSS amplifier, we used
the same cell layout as our previous work [26]. That is, we
simply increased the number of stages by connecting the
fundamental cells shown in Fig. 2 and JTLs. Except for
DSSs, we used digital cells (JTLs, a TFF, splitters, etc.) in
the library referred to as “CONNECT” [29].
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Fig. 1. Schematic illustration of a distributed DSS amplifier. “DSS-
amp” denotes an amplifier element comprising a DSS coupled with an
SFQ storage loop.
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Fig. 2. Equivalent circuit of one stage of a distributed DSS amplifier.
“X” and hourglass symbols represent an unshutned (under-damped) junc-
tion and a critically-damped junction, respectively. Resistance values near
hourglass symbols are the values of shunting resistors.

Test chips were fabricated using a 25-pA/um? Nb/
AlO,/ND integration process [30] at the National institute
of Advanced Industrial Science and Technology, Japan.
Fig. 3 shows a photomicrograph of a 12-stage distributed
DSS amplifier. A DC-to-SFQ converter (d/s) [1] is placed
at the input terminal of the circuit.
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Fig. 3. Photomicrograph of a 12-stage distributed DSS amplifier on Nb
IC.

In measurements, a test chip was cooled in a liquid
helium bath. The output voltage was acquired with a digital
oscilloscope as an open-end voltage via a 40-dB low-noise
preamplifier. Due to the limitation of our experimental
setup, the input signal frequency was set below 100kHz.
That is, quasi-static characteristics were measured.

3. Results and discussion

Typical waveforms of a sinusoidal input current and an
NRZ output voltage are shown in Fig. 4, where an SFQ is
fed to the distributed DSS amplifier via the DC-to-SFQ
converter at every rising slope of the input voltage signal.
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Fig. 4. Waveform example of a sinusoidal input current and an NRZ
output voltage. The bias current to the DSSs (Zpias) is 0.132 mA.

From here, the term of “voltage swing (Vswing)” is defined
as the voltage difference calculated by subtracting the
voltage at the “reset” state from the voltage at the “set”
state. The value of Vying shown in Fig. 4 is 8.34mV.

Vswing depends on /fyias. To evaluate the [y, depend-
ence of Vying in detail, the output voltages for the “reset”
and “set” states were measured for various /y;,s values. The
results are shown in Fig. 5 with the corresponding numer-
ical results. (We used a Josephson circuit simulator referred
to as “JSIM” [31] for numerical simulation.) From Fig. 5,
experimental and numerical Vsying values are derived and
plotted in Fig. 6 as functions of Zyi,s.
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Fig. 5. Experimental and numerical /y,s—voltage characteristics of the
12-stage distributed DSS amplifier for both the “set” and “reset” states.

Under the condition of /s < 0.135mA, the experi-
mental results agreed well with the numerical ones as
shown in Figs. 5 and 6. The experimental Vyine value
reached 8.34 mV.

On the other hand, it can be found in Fig. 6 that the
experimental operation margin for /s was reduced to one-
third of the numerical margin. The experimental Viying
values decreased rapidly for lp;,s > 0.135 mA. The numer-
ical maximum Vyine value of 10.2mV was obtained under
the condition of [;,s = 0.162 mA, which was out of the
operation condition in experiments.

The direct reason of the difference in the numerical and
experimental /pj,s margins is the difference of the zero-
voltage regions for the “reset” state. That is, in experi-
ments, the Iy, region for the zero-voltage state is quite
narrower than the numerical results.
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Fig. 6. Voltage swing (Vswing) plotted as functions of the bias current
(Ivias)- Experimental and numerical results for the 12-stage distributed DSS
amplifier are represented by the solid curves, whereas numerical results for
the 4-stage distributed DSS amplifier are plotted by a dashed curve.

Such considerable reduction of the /,;,s margin was not
observed in our previous 4-stage distributed DSS amplifier.
In addition, it is also found in Fig. 6 that the numerical /g
margins of the 4-stage and 12-stage distributed DSS am-
plifiers are almost the same. Although it is unclear at the
moment what caused the margin reduction, possible origins
are inadequate layouts around the DSSs and non-uniform
critical currents in 12 DSSs due to flux trapping or fab-
rication variations. Tolerance design should be improved to
obtain wider operation margins.

4. Conclusion

We enhanced the voltage swing of an RSFQ distributed
DSS amplifier. The output voltage was expected to be
doubled by employing a DSS in place of a single-SQUID.
A test circuit was fabricated on niobium integrated circuits
and tested in a liquid helium bath. The enhanced voltage
swing was confirmed, of which the maximum value was
8.34mV.
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