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Abstract In this paper, a novel resistive random access memory
(ReRAM) based accelerator is proposed for convolution neural network
(CNN) inference accelerations. In ReRAM-based CNN computation,
weight parameters can be pre-programmed in ReRAM crossbar arrays,
and activations are generated by processing the multiplication-and-accu-
mulation (MAC) operations in the ReRAM crossbar arrays. However,
prior works cannot reuse activations in computation, in which the activa-
tion dominates the data movements and raises significant energy cost. To
deal with this dilemma, a tiling-based dataflow is proposed to enable
activation reuse among adjacent ReRAM crossbar arrays to reduce the
activation movements. We then develop a ReRAM-based CNN accelerator
that can well suit the dataflow to reduce the cost of ReRAM access.
Evaluation results show that the proposed design achieves 1.8× energy
saving and 2.8× bandwidth saving compared with a state-of-the-art
PipeLayer accelerator.
Keywords: ReRAM-based accelerator, convolution neural networks, data
reuse, processing-in-memory
Classification: Integrated circuits

1. Introduction

Convolutional neural networks (CNNs) [1] have been
extensively adopted in various computer vision tasks, giv-
ing impressive accuracy breakthroughs in classification,
recognition, and so forth [2, 3, 4, 5, 6]. These significant
accuracy improvements mainly come from the successes
of both scaling up neural networks to tens of millions of
parameters [6, 7, 8, 9] and learning from the massive
amounts of datasets [10, 11]. However, the very deep
CNNs and large-scale datasets also lead to the high demand
of computation capability. For example, the representive
AlexNet model [2], which is composed of 60MB weight
parameters and 630MB connections, are over 100� more
than those of Lenet5 [12]. Consequently, it is critical to
develop efficient hardware solutions for large-scale CNN
deployments.

Various dedicated hardware solutions have been de-
veloped for efficient CNN accelerations. In particular, the
emerging novel nonvolatile memories such as metal-oxide

resistive random access memory (ReRAM) [13, 14, 15, 16,
17, 18] have the capability of performing arithmetic oper-
ations beyond data storage. For example, PRIME [13]
dynamically configures ReRAM crossbar arrays as process
elements or as normal memory for energy harvest. Pipe-
Layer [18] utilizes weight replication to boost the through-
put and performs multiplication-and-accumulation (MAC)
operations in ReRAM crossbar arrays. In the ReRAM-
based MAC computation, the weight parameters can be
pre-programmed in ReRAM crossbar arrays before calcu-
lation, and the activations are generated by processing the
MAC operations in the ReRAM crossbar arrays. This out-
performs conventional FPGA- and ASIC-based hardware
solutions [19, 20, 21, 22, 23, 24, 25, 26, 27, 28] in both
memory access and computation for large-scale CNN
accelerations, which struggle on the huge performance
gap between computation and memory. However, existing
ReRAM-based CNN accelerators have to consume consid-
erable energy and bandwidth for the activation access
[13, 18], because the activations are dynamically generated
during the MAC operations. Especially, the input activa-
tions are frequently loaded as inputs, which dominate the
memory access in CNN deployments.

Fortunately, the significant reusable input activations in
CNNs can be utilized to reduce the activation movements.
For example, statistical results from representative CNNs,
such as AlexNet, VGG, and ResNet, show that over 80%
of the input activations in convolutional layers can be
reused, as shown in Table I. However, existing ReRAM-
based accelerators [13, 18] cannot reuse input activations
because they cannot tackle the overlapped reusable input
activations in the convolutional layers, resulting in signifi-
cant energy cost. Furthermore, exploiting activation reuse
in ReRAM crossbar arrays directly as conventional accel-
erators [20, 23, 29, 30] do will incur severe performance
and energy overheads, due to the required heavy weight
movements in MAC operations. Consequently, it is difficult
to reuse input activations in the ReRAM-based computa-
tion. Thus, an efficient ReRAM-based accelerator which
enables to eliminate the redundant activation access is
urgently required for large-scale CNN deployments.

Table I. Statistical reusable input activations in Conv layers of famous
CNNs.

CNNs ratio of reusable activations in Conv layers

AleNet 92.0%
VGG16 88.9%
ResNet18 83.2%
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In this paper, a ReRAM-based accelerator architecture
and dataflow is introduced for efficient CNN deployments.
The dataflow tiles the convolutional layers based on the
size of stride so that the activations can be reused without
the impacts of the different stride sizes. We then develop
a ReRAM-based accelerator to well suit the dataflow and
to enable activation reuse by shifting the reusable input
activations to adjacent ReRAM crossbar arrays, without
reloading inputs, for efficient energy and bandwidth
savings. Evaluation results show that the proposed design
achieves 1:8� energy saving and 2:8� bandwidth saving
than the state-of-the-art PipeLayer accelerator.

2. Preliminaries and motivations

Fig. 1 illustrates the convolving computation of a state-of-
the-art accelerator, PipeLayer, for a convolutional (Conv)
layer. To begin with, Fig. 1(a) depicts the basic computa-
tion of a Conv layer. The output activations (out) in each
output feature map (R � C) are generated by convolving
input activations (ia) with the shared N channels kx � ky
kernel weights (w) under a stride S.M groups of w generate
M channels of out. Fig. 1(b) depicts the convolution com-
putation of PipeLayer in ReRAM crossbar arrays. Weights
are replicated in the ReRAM crossbar arrays, and input
activations are reshaped into vectors (kx � ky � N) for the
MAC operations without reuse.

Both input activation loading and output activation
storing dominate the memory access in ReRAM-based
CNN inference, since activations are generated during the
MAC operations and weights can be pre-programmed
without update. In particular, the input activation loading
operation dominates the activation access in Conv layer’s
deployments. The total capacity of the loaded input acti-
vations for a Conv layer (Fig. 1(a)) with a kx � ky � N �
R � C size is kx � ky � N=M times larger than that for the
output activation storage. Fortunately, there are large
amounts of reusable input activations in Conv layers, as
shown in Table I. Also, Conv layers occupy over 90%
of the computation in most popular CNN models [19].
These two characteristics motivate the authors to reduce the
redundant memory access by utilizing the reusable input
activations. Nevertheless, the reusable input activations are
sensitive to the size of stride S. To deal with the different
sizes of S, we tile Conv layers into pieces based on S, so
that the input activations can be reused without the impact
of the stride.

3. Proposed dataflow and architecture

Proposed Tiling-based Dataflow Fig. 2 outlines the pro-
posed dataflow, which enables input activation reuse in
ReRAM crossbar arrays for Conv layers. The key objective
is to shift prior loaded input activations to adjacent groups
of ReRAM crossbar arrays for reuse.

The tiling-based dataflow includes two key steps. First,
to deal with different sizes of S, the input activations and
weights are partitioned into pieces based on S, as shown in
Fig. 2① and ②. After partition, each piece of activations has
N channels and S � ky activations in each channel. In this
case, the virtual new stride is resized to “1” so that the
input activations can be efficiently reused by shifting them
to adjacent group of ReRAM crossbar arrays. There are no
overlapped activations among pieces of inputs so that they
can be reused without the impact of different stride sizes.
Second, the ReRAM crossbar arrays are organized into
groups ðG1; G2; . . .Þ mainly based on the stride and kernel
sizes, as shown in Fig. 2③. The ReRAM crossbar arrays
within the same group share the same input activations, as
shown in ④, and the weights are replicated to boost the
throughput, as shown in ⑤. Based on the two above key
operations, the dataflow enables to avoid the impacts of the
stride in the process of reusing input activations.

Fig. 2⑥ and ⑦ illustrate an example of reusing input
activations. The different pieces of weights are mapped to
different groups of ReRAM crossbar arrays, as shown in
⑥, which provides the opportunity to reuse input activa-
tions in adjacent group of ReRAM crossbar arrays. The
loaded input activation vectors, for example, hx1; . . . ; xi�1i
(without x0, i < C), for G1 at cycle #0, as shown in ⑦, can
be reused by shifting them to adjacent group of ReRAM
crossbar arrays (G2) at the followed cycle #1. This is
because they are shared by the adjacent output activation
vector (i.e., hO1; . . . ; Oi�1i). Consequently, the input
activations can efficiently be reused by shifting them to
adjacent groups of ReRAM crossbar arrays.

The proposed dataflow outperforms prior accelerators,
such as PRIME and PipeLayer, which do not support
activation reuse. The reduced redundant memory access
for a Conv layer reaches 1 � S=kx of the total loaded input
activations, which contributes to huge energy and band-
width saving. In addition, the dataflow can also be applied

Fig. 1. Inference example of PipeLayer. (a) Conv layer. (b) Mapping
the Conv layer to ReRAM crossbar arrays with the weight replication.

Fig. 2. Proposed dataflow with input activation reuse.
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to the fully-connected (FC) layers of CNNs. This is be-
cause the FC layers can be regarded as the typical con-
volution computation of Conv layers with a “1 � 1” edge
size of output feature maps.

Proposed ReRAM-based Architecture Fig. 3 depicts
the proposed ReRAM-based architecture for CNN infer-
ence, which enables activation reuse and weight replica-
tion. Two activation memory components, IM and OM,
alternately accommodate input activations and output acti-
vations, and the kernel memory component (KM) stores
weights. Process element (PE) arrays are composed of
input register components (IRs) and ReRAM crossbar array
components (XBs), mainly performing the MAC opera-
tions. The memory access of activations includes loading
input activations (ia) from IM/OM to IR and storing the
generated output activations (i.e., out) back to OM/IM. In
contrast, the weight parameters (w) can be pre-programmed
and replicated in XBs before the MAC operations, which is
similar to PRIME and PipeLayer.

IR plays a key role to enable input activation reuse. It
temporally accommodates input activations from IM/OM
before transferring them into XB for computation. IR is
organized as a chain topology for accommodating input
activations, so that they can be reused in adjacent registers
for ReRAM crossbar arrays. For example, iai and iaj
denote the input activations of Fig. 2 for different ReRAM
groups (i.e., G1 and G2). iai can be reused in computation
by shifting them to the adjacent register vector (Regj) in
the followed cycle. Consequently, the activations can be
efficiently reused in the process of MAC operations.

4. Simulation results

Simulation Setup We conduct the evaluation of the
proposed design (denoted as “Prop”) by comparing with
the state-of-the-art ReRAM-based accelerator baseline,
PipeLayer [18]. Specifically, PipeLayer enables to replicate
weights in ReRAM crossbar arrays for high throughput and
to process the MAC operations in ReRAM memory. Three
representative CNN benchmarks, AlexNet [2], VGG [4],
and ResNet [6], are adopted with images from ImageNet as
inputs. Details of the benchmarks are shown in Table II.
The latency and energy overheads of ReRAM crossbar

arrays are profiled by the NvSim [31] tool. The size of a
ReRAM crossbar array is 128 � 128. The latency and
energy for the read/write operations of ReRAM crossbar
arrays are respectively 9.668 ns/110.53 ns per spike and
126.6 pJ/628.1 pJ per spike. The energy consumption of
weight access is devoid because they can be pre-pro-
grammed in ReRAM crossbar arrays before the MAC
operations. Each data is 16 bits, and the resolution of each
ReRAM cell is 4 bits.

Energy Saving Fig. 4 shows the normalized energy
comparison between the baseline and the proposed archi-
tecture. The energy cost includes three folds: IR access,
read data from ReRAM memory, and write data to ReRAM
memory for output activation storage. On average, the
proposed design achieves 1:8� energy saving than the
baseline with 2:1�, 1:8�, and 1:5� energy saving on
AlexNet, VGG, and ResNet, respectively. The energy sav-
ing comes from the reduced ReRAM memory access by
input activation reuse.

Performance Fig. 5 shows the normalized execution
time comparison of the proposed design against the base-
line. On average, the proposed design takes a bit more
execution time than the baseline, reaching 1:17�. This is
because the tiling operation of the proposed dataflow incurs
a bit more severe fragmentation issue, where the ReRAM
crossbar arrays are idle in computation without sufficient
inputs. However, the proposed design enables input acti-
vation reuse for significant energy saving. Furthermore,
the Conv layers occupy most of the computation time
(98.8% in the proposed design) for the CNN deployments.
This further demonstrates that exploiting activation reuse
on the Conv layers can achieve efficiency for the CNN
deployments.

Bandwidth Fig. 6 shows the normalized bandwidth
comparison between the proposed design and the baseline.
The bandwidth is evaluated based on the data transmission
of both input and output activations between the PEs and
IM/OM components. On geometric average, the proposed

Fig. 3. Proposed architecture with activation reuse.

Table II. CNN workload specifications.

CNNs total layers Conv layers FC layers

AleNet 8 5 3
VGG16 16 13 3
ResNet18 18 17 1

Fig. 4. Energy saving compared with the baseline.
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design achieves 2:8� bandwidth saving than the baseline
by reusing input activations. Specifically, the proposed
design gains 3:2�, 2:8�, and 2:6� bandwidth saving than
the baseline on AlexNet, VGG, and ResNet, respectively.

Impact of Kernel, Stride, and Channel: To look
insight into the energy impact of the different layers of
CNNs, Fig. 7 evaluates the energy saving over the baseline
based on the representative layers of the benchmarks, as
shown in Table III. The VGG benchmark are devoid
because their layers can be represented by the layers in
Table III, for example, AC5 and R2aB2a have the same
kernel size (kx ¼ 3) and stride size (S ¼ 1) as the Conv
layers of VGG.

Fig. 7 shows the normalized energy saving against the
baseline based on the layers in Table III. It can be observed
that (a) the proposed design can achieve efficient energy
saving when the layer has a large kernel size and a small
stride size. For example, the proposed design achieves up
to 2:99� energy saving than the baseline in the AC2 layer
with kx ¼ 5 and S ¼ 1; (b) we gain efficient energy saving
even the size of stride S is larger than 1. For example, the
proposed design achieves 1:18� energy saving at AC1,
where S ¼ 4; and (c) the proposed design takes a bit more

energy consumption than the baseline when the kernel size
of the convolution layer is 1, as shown in the R2aB1 layer,
because of the fragmentation issue caused by the tiling
operation. To sum it up, the proposed design can achieve
efficient energy saving for most convolutional layers in
CNN deployments.

5. Conclusion

A ReRAM-based dataflow and architecture have been
introduced for better energy and bandwidth saving by
exploiting input activation reuse to reduce redundant mem-
ory access. The input activations are reused by shifting
them to adjacent ReRAM crossbar arrays to reduce the
data movement between memory and process elements.
Evaluation results show that the proposed design can
achieve 1:8� energy saving and 2:8� bandwidth saving
than a state-of-the-art PipeLayer accelerator.
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