
LETTER

Pair-HMM accelerator based on non-cooperative structure

Pengfei Wang1, Yuanwu Lei2a), and Yong Dou1

Abstract Pair Hidden Markov Model (Pair-HMM) forward algorithm is
gaining increasing popularity in biological research tools. We propose a
novel non-cooperative structure of Pair-HMM forward algorithm accel-
erator on Field Programmable Gate Array (FPGA). We employ a task-
level parallel scheme in the structure. We design the non-cooperative
Processing Element (PE) to complete Pair-HMM forward algorithm in-
dependently. Our three-layer tree topology improves the scalability for
different FPGAs. Compared to previous works, our structure reduces the
idle cycles which occurs in the systolic array structure and the PE ring
structure. Compared with the PE ring, our implementation on Arria 10 can
achieve 1.19× speedups.
Keywords: acceleration, FPGA, non-cooperative structure, Pair-HMM
forward algorithm
Classification: Integrated circuits

1. Introduction

Gene sequence alignment compares the target gene se-
quence with the reference one. It identifies regions of
similarity which may be a consequence of functional,
structural and evolutionary relationships between the se-
quences. It is mainly applied in precision medicine, screen-
ing for the newborn and screening for carriers of disease-
causing mutations [1, 2, 3, 4, 5], etc. The Pair Hidden
Markov Model (Pair-HMM) has various inference algo-
rithms such as optimal sequence alignment (Viterbi algo-
rithm [6]) and the overall alignment probability (forward
algorithm [7]). Pair-HMM forward algorithm is one of the
most widely used algorithms in DNA sequence alignment
[8]. According to [9], the working stage of Pair-HMM
forward algorithm occupied 70% runtime. As a conse-
quence, it is the core and the most time-consuming algo-
rithm in GATK HaplotypeCaller [10, 11].

Gene sequence alignment has the characteristics of a
large amount of data and calculation. For example, the
human genome includes more than 3 billion base pairs
[12]. The number of gene sequence alignment tasks reaches
more than one million. Therefore, many researchers use
parallel platforms [13] such as multi-core CPUs [9, 14],
GPUs [15, 16, 17, 18, 19] and Field Programmable Gate
Arrays (FPGAs) [20, 21, 22, 23, 24, 25] to develop

parallelism in gene sequence alignment applications. Com-
pared with CPUs and GPUs, FPGA chips serve as custom
hardware for the computing-intensive applications with
numerous computing and storage resources [26, 27]. Thus,
FPGAs could potentially implement gene sequence align-
ment and provide significantly higher performance.

At present, the systolic array structure [12, 24, 28, 29]
and the improved ring structure [25] are adopted in the
implementation of the FPGA-based Pair-HMM accelerator.
The systolic array structure is a large computation pipeline.
It integrates multiple PEs and uses these to cooperatively
calculate the elements in the gene sequence alignment task.
However, this structure will cause a lot of idleness of PEs
in the startup and flush phases. And due to the cooperation
needs waiting and synchronization, the idleness of PEs
also occurs when the lengths of gene sequences are not an
integral multiple of the PE number in the array. In order to
overcome these defects, reference [25] has proposed a PE
ring structure, which connects the head PE and the tail PE
of the systolic array through the buffers and provides high
effectiveness for variable lengths of gene sequences. How-
ever, the idleness of PEs occurs in the PE ring structure
when the lengths of gene sequences are not an integral
multiple of the PE number in the ring. The designs of the
systolic array structure and PE ring structure show the
pursuit of the throughput of gene sequence alignment.

However, the number of sequence alignment tasks is
huge and the lengths of gene sequences vary greatly.
In view of the overall performance and throughput for
the entire application dealing with variable-size gene
sequences, we propose a non-cooperative PE structure to
complete gene sequence alignment tasks independently.
Firstly, each non-cooperative PE can provide high comput-
ing efficiency for variable-size gene sequences. Secondly,
non-cooperative PEs are integrated into our Pair-HMM
accelerator to improve the overall performance with the
task-level parallel scheme. Thirdly, a three-layer tree top-
ology of non-cooperative PEs is proposed to improve the
scalability of our accelerator.

The experimental result shows that our design can
achieve the higher computing efficiency. Compared with
the C++ baseline and the PE ring implementation, our
work can achieve an acceleration of 575� and 1:19�,
respectively.

The rest of this paper is organized as follows:
Section 2 outlines the basic principles of the Pair-HMM
forward algorithm. Section 3 describes the design of our
forward algorithm accelerator based on the non-coopera-
tive structure. Section 4 illustrates the experimental results.
Section 5 summarizes our work.

DOI: 10.1587/elex.16.20190402
Received June 23, 2019
Accepted July 9, 2019
Publicized July 19, 2019
Copyedited August 10, 2019

1National Laboratory for Parallel and Distributed Processing,
National University of Defense Technology, Changsha
410073, China
2College of Computer, National University of Defense
Technology, Changsha 410073, China
a) yuanwulei@nudt.edu.cn

IEICE Electronics Express, Vol.16, No.15, 1–6

1

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers



2. Pair-HMM forward algorithm

Pair-HMM gives a probability distribution over certain
sequences of pairs of observations including the target
gene sequence and the reference sequence. There are three
hidden states in Pair-HMM, called Match (M), Insertion (I)
and Deletion (D). The state transitions are shown in Fig. 1.
It shows that the transition relationship among the three
states and that each weight W on the line represents the
probability of state transitions. We define the matrix M by
Mr;c which indicates the total likelihood of all paths from
the beginning of the Read sequence to position r in the
match state. Dr;c and Ir;c are defined likewise. And the
recursions

Mr;c ¼ Priorðr; cÞ � ðWmm �Mr�1;c�1
þWim � Ir�1;c�1 þWdm � Dr�1;c�1Þ

ð1Þ

Ir;c ¼ Wmi �Mr�1;c þWii � Ir�1;c ð2Þ
Dr;c ¼ Wmd �Mr;c�1 þWdd � Dr;c�1 ð3Þ

define the entire Pair-HMM forward algorithm used in the
GATK HaplotypeCaller tool [30]:

As shown in Eq. (1,2,3) and Algorithm 1, the critical path
for the calculation of M is longer than the critical paths for
calculating I and D. In the FPGA filed, it means idleness
and waiting. As a consequence, in reference [25], two
temporary variables ta, tb are added, which help to com-
plete part of the calculation operations in advance when M
is updated, so as to achieve regularizing the length of the
critical path. Therefore, when we implement the improved
algorithm, the memory cost will increase accordingly and
we will analyze the storage requirement in section 3.2.3.

On this basis, we get our improved version of the Pair-
HMM forward algorithm as shown in Algorithm 2.

The input of the Pair-HMM forward algorithm consists
of two parts: The first part is the reference gene part, called
the Haplotype sequence. The second part is the target part,
including the Read sequence and three quality factor se-
quences (base-quals, ins-quals, and del-quals). The inter-
mediate results of the algorithm include M, I, D, ta and tb.
The output is an overall similarity value of the Read
sequence compared with the Haplotype sequence. The
parameters in Pair-HMM forward algorithm are defined
as follows:

WmmðrÞ ¼ 1 � �½iq½r � 1� þ dq½r � 1��; ð4Þ
WimðrÞ ¼ WdmðrÞ ¼ 0:9; ð5Þ
WmiðrÞ ¼ �½iq½r � 1��; ð6Þ
WiiðrÞ ¼ WddðrÞ ¼ 0:1; ð7Þ

WmdðrÞ ¼ �½dq½r � 1��; ð8Þ

Priorðr; cÞ ¼
1 � �½bq½r � 1�� , if ðRr ¼ HcÞ,
ð1=3Þ � �½bq½r � 1�� , if ðRr ≠ HcÞ,

(
ð9Þ

�½q� is the error rate implied by the phred-scaled quality q.
The input data becomes the indeices of ¥ to generate the
weight parameters used in the calculation.

To illustrate the algorithm, we define two concepts
firstly.
Task: Complete calculation of the alignment of a pair
sequences including Read and Haplotype sequences.
Computation matrix: In a task, the computation matrix
represents the calculation process where each position in
the Haplotype and the Read sequences is compared. The
size of the matrix is lengthðHaplotypeÞ � lengthðReadÞ.
Each element in the matrix represents operations of line
5 to 9 in Algorithm 2.

As shown in Fig. 2, the Pair-HMM forward algorithm
is performed with diagonal traversal order. k represents the
kth diagonal. The element ½r; c� of the computation matrix
indicates that the rth position of the Read sequence is

Fig. 1. Pair-HMM states transition diagram.

IEICE Electronics Express, Vol.16, No.15, 1–6

2



compared with the cth position of the Haplotype sequence.
The final result, shown in Algorithm 2 line 10 to 11, is
obtained by accumulating the M and I values in all ele-
ments of the last row in the computation matrix.

From Algorithm 2 and Fig. 2, we can conclude that:
1) The calculation of each diagonal element depends on

the calculations of previous diagonal elements. The
element ½r; c� depends on the elements ½r; c � 1� and
½r � 1; c�.

2) There is no data dependence among elements on the
same diagonal, of which the elements can be executed
in parallel.

3) The Pair-HMM forward algorithm is a computing-
intensive algorithm. Time complexity is Oðn � mÞ and
memory access overhead is Oðn þ mÞ, where n and m
represent the length of Read sequence and Haplotype
sequence respectively.

4) The tasks are independent of each other. Thus, task-
level parallelism scheme can be used to improve
performance.

3. Non-cooperative structure Pair-HMM accelerator

Taking all the above information into consideration, we
design the non-cooperative PE and the overall structure.

The non-cooperative PE is shown in Fig. 3(c). It is an
independent task processing unit, which can process one
task individually without any cooperation with others. The
PE contains the calculation unit, the PE controller, the
result adder and data storage components. The PE con-
troller realizes the management of the state machine, the
control of other functional components, and the signal
interaction with the upper module. Shown in Fig. 3(d),
the calculation unit accomplishes operations of line 5 to 9
in Algorithm 2.

Fig. 4 shows the calculation process of PEs. There are
NP PEs, and each PE performs a single sequence alignment
task independently. The block named Rawi

j;k represents the
raw data from the jth element of the Read sequence and the
kth element of the Haplotype sequence in the ith task. These
raw data are used as the indices of the error rate sequence
to generate the weights shown in Eq. (4–9). The block
named IRi

j represents the jth element of the intermediate
result data in the ith task, where the order of the indices is
incremented along the diagonal elements. The updated
element overwrites the element with the same index after
its calculation because the elements with data dependence
have been used in the calculation. Therefore, the inter-
mediate result data can be stored in the form of sequences

instead of matrices. The controller controls storage compo-
nents to feed data into the calculation pipeline cycle by
cycle. After the data of the last element of the current
diagonal have been fed into the pipeline, if the calculation
of the first element of this diagonal is not finished, idle
operations will be inserted. Otherwise, the calculation of
the next diagonal will be started immediately. The data in
one task are only stored in one PE by the control of the
upper module. Without any cooperation among PEs, tasks
can be processed independently.

On this basis, we propose a three-layer tree topology
structure to manage a large number of integrated PEs on
FPGAs. The overall design of the pair-HMM accelerator is
shown in Fig. 3. As shown in Fig. 3(a), there are NA top
modules named Allocation. To realize load balancing, one
Allocation utilizes a FIFO to share the high bandwidth
with a time-sharing multiplexing scheme. SuperPE is the
module of the middle layer of the three-layer topology.
Fig. 3(b) shows the structures of the Allocation and the
SuperPE. The structures of these two modules are similar
and realize the transmission to the lower layer module with
the distribution module. Through multiplexers, their results
are transmitted to the corresponding buffer. Each Alloca-
tion can run independently with great flexibility and has NS

SuperPE modules inside. SuperPEs are executed sequen-
tially. Its main function is to buffer and distribute the input
data of the upper layer. There are NP PEs inside a SuperPE
and these PEs work in a polling manner. Adopting the
polling task allocation strategy ensures load balancing
among PEs and simplifies control. The three-layer tree
topology structure has the advantages of facilitating layout,
routing and obtaining better scalability. We can deploy PEs
according to the hardware resources on the FPGA to
achieve the best performance.

4. Experiments and results

4.1 Experimental environment
Our test data is from the Whole Genome Sequence data
set [31], generated by the HaplotypeCaller from GATK
version 2.7. The baseline consists of three data sets with
different lengths. Each data set contains aligned sequences
consisting of the Read and Haplotype pairs ranging in
length from 10 to 302 bases. In our experiment, our design
is implemented on the Xilinx’s xc7vx485tffg1761-2L,
xc7vx690tffg1761-2L, xc7vx980tffg1930-2 and Altera’s
Arria 10 (10AX115H1F34E1SG).

4.2 Implementation on FPGAs
The resources and frequency situation in our design im-
plemented on FPGAs are shown in Table I. On the Virtex-7
platform, the maximum frequency in our design achieves
246.91MHz. On the Arria 10 platform, the maximum
frequency achieves 230MHz. And the clock cycles spent
on the testing data sets with 64 PEs and 128 PEs imple-
mentations are shown in Fig. 5. In the “10s” and “1m” data
sets, performance on the implementation with 128 PEs
achieves two times than that with 64 PEs. In “tiny” data
set, the performance improves 1:64�. This is because when
the number of sequences is small, it is difficult to balance

Fig. 2. The features of Pair-HMM forward algorithm.

IEICE Electronics Express, Vol.16, No.15, 1–6

3



the load of PEs and hide the overhead of the initialization
of PEs. Thus, the performance of 128 PEs is not fully
utilized.

From the perspective of parameter settings, there are
some slight differences between the Pair-HMM forward
algorithm in our acceleration design and [25]. In our
algorithm, the operations of calculating the “Prior” parame-
ter add one more floating-point multiplication operation.
It results in a single PE using more computing resources
than [25].

4.3 Impact of PE numbers
When the total number of PEs is constant, the adjustment
of the number of Allocations and SuperPEs will affect

the performance. As shown in Fig. 6, we adjust the number
of Allocations NA and the number of PEs in one Allocation
module, which is NS � NP. Fig. 6 shows the normalized
execution time executed on three testing data sets, where
the “p � q” in the figure legend means NA ¼ p,
NS � NP ¼ q. In the case of a certain number of PEs, the
larger NA, the better the performance. But it is difficult to
meet the bandwidth requirement with the increasing NA.
Thus, we do not further increase NA larger than 8.

4.4 Performance comparison with related work
Comparing Fig. 6(a) with Fig. 6(b), both in the optimal
configuration, the performance of our design with 128 PEs
is 1:73� than that of our design with 64 PEs. Because
higher memory bandwidth is needed on the 128 PEs
version, the performance of the 128 PEs version cannot
be doubled.

Fig. 6 and Table II show the performance comparison
between our implementation and the other platforms, in-
cluding multi-core CPUs, GPUs and FPGAs. The “10s”
data set is used in Table II. Compared with GPU imple-
mentation with Nvidia K40 [29], our design can achieve a
speedup with 32:27�. Reference [18] has improved the
warp-based GPU implementation on a real data set. How-

Table I. Synthesis results for target FPGAs

FPGA xc7vx485t xc7vx690t xc7vx980t Arria 10

#PE 64 64 128 128
Frequency 227.27MHz 246.91MHz 222.22MHz 230MHz
LUT 69.82% 56.81% 88.64% 90%
DSP 91.43% 49.78% 99.56% 93%
BRAM 45.15% 31.63% 57.07% 25%

(a) Pair-HMM Accelerator (b) Structures of Allocation and SuperPE

(c) PE (d) Calculation Unit

Fig. 3. Implementations use data sets for testing

Fig. 4. The calculation process of the structure

IEICE Electronics Express, Vol.16, No.15, 1–6

4



ever, due to the small number of read-haplotypes pairs and
the unbalance load of multiple threading, it is not using the
GPU resources efficiently. Thus, our design can achieve a
5:89� speedup in comparison to improved warp-based
GPU version.

As shown in Fig. 6, two types of FPGA platforms are
used to compare the performances of our non-cooperative
structure with that of PE ring structure [25], which has the
highest performance among FPGA implementations of
Pair-HMM as far as we know. 128 PEs are integrated into
Altera Arria 10 respectively both in our design and [25].
Due to less idle cycles and easier to achieve load balancing
among PEs for different lengths of read-haplotypes pairs on
real data sets, our non-cooperative structure has improved
performance by an average factor of 1:19� over the PE
ring structure.

5. Conclusion and future work

In our work, we implemented a Pair-HMM forward algo-
rithm accelerator with non-cooperative PEs that process the
individual task independently through a tree topology. The
non-cooperative implementation achieved a 575� speedup
compared to the C++ program and a 19% performance
improvement over the implementation of the PE ring
structure.

We analyzed the relationship between the performance
and the number of lower modules mounted at each level in
the tree topology. For FPGAs with different computing
resources, we can choose the correct configuration parame-
ters so that we can flexibly port the accelerator and max-
imize the use of computing resources for the best perform-
ance which improves the applicability of our structure. Our
non-cooperative structure is quite different from other
structures in the calculation mode and PE schemes. The
differences exist not only in providing a task scheduling
mechanism for PEs but also in the working mechanism in
every PE. Our non-cooperative structure digs out the
independence of the data in one comparison task and uses
one PE to solve one comparison task to realize multiple
PEs solving different tasks independently. It shows higher
computing efficiency than FPGA implementations of other
structures.

In the future, flexible configuration of PE numbers
according to specific different FPGA resources can be one
direction of further research. And the idle cycles in the
startup and flush phases can be utilized among the PEs for
less idleness overall. We believe that with the rapid devel-
opment of bioinformatics, FPGA will play a more impor-
tant role.

Acknowledgments

This work is supported by the National Key
Research and Development Program of China under
No. 2018YFB1003405.

References

[1] M. J. Khoury, et al.: “Population screening in the age of genomic
medicine,” N. Engl. J. Med. 348 (2003) 50 (DOI: 10.1056/
NEJMra013182).

[2] E. T. Juengst: ““Prevention” and the goals of genetic medicine,”
Hum. Gene Ther. 6 (1995) 1595 (DOI: 10.1089/hum.1995.6.12-

Table II. Performance comparison on implementations

Platform Runtime (ms) Speedup

Original Java version [9] 10800 1�
C++ Baseline [9] 1267 9�
Intel Xeon 24 Cores [25] 15 720�
NVidia K40 GPU [29] 70 154�
Improved warp based [18] 12.8 843�
PE Ring (Stratix V) [25] 5.3 2038�
Alter OpenCL (Arria 10) [25] 2.8 3857�
PE Chunks (Xilinx KU3) [22] 5.0 2160�
PE Ring (Arria 10) [25] 2.6 4154�
Non-coop-64PE (XC7VX690T) 5.0 2609�
Non-coop-128PE (Arria 10) 2.2 4970�

(a) Cycles on three testing data sets in two im-
plementations

(b) Comparison of effective cycles ratio in dif-
ferent structures

Fig. 5. Implementations use data sets for testing

(a) 64 PEs on XC7VX690T

(b) 128 PEs on Arria 10

Fig. 6. Normalized execution time on three data sets when using
different sizes of one Allocation

IEICE Electronics Express, Vol.16, No.15, 1–6

5

http://dx.doi.org/10.1056/NEJMra013182
http://dx.doi.org/10.1056/NEJMra013182
http://dx.doi.org/10.1089/hum.1995.6.12-1595


1595).
[3] N. J. Wald: “The definition of screening,” J. Med. Screen. 8 (2001)

1 (DOI: 10.1136/jms.8.1.1).
[4] L. L. McCabe, et al.: “Newborn screening: Rationale for a

comprehensive, fully integrated public health system,” Mol. Genet.
Metab. 77 (2002) 267 (DOI: 10.1016/S1096-7192(02)00196-8).

[5] B. Hill, et al.: “Precision medicine and fpga technology: Challenges
and opportunities,” IEEE MWSCAS (2017) 655 (DOI: 10.1109/
mwscas.2017.8053008).

[6] R. Li, et al.: “A high-throughput reconfigurable Viterbi decoder,”
IEEE WCSP (2011) 1 (DOI: 10.1109/WCSP.2011.6096781).

[7] R. Durbin, et al.: Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids (Cambridge University
Press, Cambridge, 1998) 77 (DOI: 10.1017/CBO9780511790492).

[8] J. Shendure and H. Ji: “Next-generation DNA sequencing,” Nat.
Biotechnol. 26 (2008) 1135 (DOI: 10.1038/nbt1486).

[9] M. Carneiro: “Accelerating variant calling,” in Broad Institute Intel
Genomic Sequencing Pipeline Workshop Powerpoint Presentation
Mount Sinai (2013) Available online: https://hpc.mssm.edu/files/
Carneiro_workshop.pdf.

[10] A. McKenna, et al.: “The genome analysis toolkit: A mapreduce
framework for analyzing next-generation DNA sequencing data,”
Genome Res. 20 (2010) 1297 (DOI: 10.1101/gr.107524.110).

[11] M. A. DePristo, et al.: “A framework for variation discovery and
genotyping using next-generation DNA sequencing data,” Nat.
Genet. 43 (2011) 491 (DOI: 10.1038/ng.806).

[12] C. Rauer and N. Finamore: “Accelerating genomics research with
opencl and fpgas,” Altera, Now Part of Intel Tech. Rep 2016 (DOI:
10.1145/3078155.3078179).

[13] S. Aluru and N. Jammula: “A review of hardware acceleration for
computational genomics,” IEEE Des. Test 31 (2014) 19 (DOI:
10.1109/MDAT.2013.2293757).

[14] G. VdAuwera: “Speed up haplotypecaller on ibm power8
systems,” Available online: https://gatkforums.broadinstitute.
org/gatk/discussion/4833/speed-up-haplotypecaller-on-ibm-power8-
systems.

[15] X. Li, et al.: “A speculative hmmer search implementation on
gpu,” IEEE IPDPSW (2012) 735 (DOI: 10.1109/ipdpsw.2012.91).

[16] H. Jiang and N. Ganesan: “Cudampf: A multi-tiered parallel
framework for accelerating protein sequence search in hmmer on
cuda-enabled gpu,” BMC Bioinformatics 17 (2016) 106 (DOI:
10.1186/s12859-016-0946-4).

[17] S. Ren, et al.: “Exploration of alternative gpu implementations of
the pair-hmms forward algorithm,” IEEE BIBM (2016) 902 (DOI:
10.1109/BIBM.2016.7822645).

[18] S. Ren, et al.: “Efficient acceleration of the pair-hmms forward
algorithm for gatk haplotypecaller on graphics processing
units,” Evol. Bioinform. Online 14 (2018) 1 (DOI: 10.1177/
1176934318760543).

[19] S. Che, et al.: “Accelerating compute-intensive applications with
gpus and fpgas,” IEEE SASP (2008) 101 (DOI: 10.1109/sasp.
2008.4570793).

[20] L. W. Howes, et al.: “Comparing fpgas to graphics accelerators and
the playstation 2 using a unified source description,” IEEE FPL
(2006) 1 (DOI: 10.1109/fpl.2006.311203).

[21] K. Benkrid, et al.: “High performance biological pairwise sequence
alignment: Fpga versus gpu versus cell be versus gpp,” IJRC 2012
(2012) 752910 (DOI: 10.1155/2012/752910).

[22] D. Sampietro, et al.: “Fpga-based pairhmm forward algorithm for
DNA variant calling,” IEEE ASAP (2018) 1 (DOI: 10.1109/ASAP.
2018.8445119).

[23] S. S. Banerjee, et al.: “On accelerating pair-hmm computations in
programmable hardware,” IEEE FPL (2017) 1 (DOI: 10.23919/
FPL.2017.8056837).

[24] J. Peltenburg, et al.: “Maximizing systolic array efficiency to
accelerate the pairhmm forward algorithm,” IEEE BIBM (2017)
(DOI: 10.1109/BIBM.2016.7822616).

[25] S. Huang: “Hardware acceleration of the pair hmm algorithm for
DNA variant calling,” ACM FPGA (2017) (DOI: 10.1145/
3020078.3021749).

[26] Y. Zhou and J. Jiang: “An fpga-based accelerator implementation

for deep convolutional neural networks,” IEEE ICCSNT (2015)
829 (DOI: 10.1109/iccsnt.2015.7490869).

[27] J. Shen, et al.: “Towards a multi-array architecture for accelerating
large-scale matrix multiplication on fpgas,” IEEE ISCAS (2018) 1
(DOI: 10.1109/iscas.2018.8351474).

[28] M. Ito and M. Ohara: “A power-efficient fpga accelerator: Systolic
array with cache-coherent interface for pair-hmm algorithm,” IEEE
COOL CHIPS XIX (2016) 1 (DOI: 10.1109/CoolChips.2016.
7503681).

[29] S. Ren, et al.: “Fpga acceleration of the pair-hmms forward
algorithm for DNA sequence analysis,” IEEE BIBM (2015) (DOI:
10.1109/BIBM.2015.7359892).

[30] D. Benjamin: “Pair hmm probabilistic realignment in haploty-
pecaller and mutect,” Broad Institute. Available online: https://
github.com/broadinstitute/gatk/blob/master/docs/pair_hmm.pdf.

[31] Pair-HMM test data. Available online: https://github.com/
MauricioCarneiro/PairHMM/tree/master/test_data.

IEICE Electronics Express, Vol.16, No.15, 1–6

6

http://dx.doi.org/10.1089/hum.1995.6.12-1595
http://dx.doi.org/10.1136/jms.8.1.1
http://dx.doi.org/10.1016/S1096-7192(02)00196-8
http://dx.doi.org/10.1109/mwscas.2017.8053008
http://dx.doi.org/10.1109/mwscas.2017.8053008
http://dx.doi.org/10.1109/WCSP.2011.6096781
http://dx.doi.org/10.1017/CBO9780511790492
http://dx.doi.org/10.1038/nbt1486
https://hpc.mssm.edu/files/Carneiro_workshop.pdf
https://hpc.mssm.edu/files/Carneiro_workshop.pdf
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1038/ng.806
http://dx.doi.org/10.1145/3078155.3078179
http://dx.doi.org/10.1145/3078155.3078179
http://dx.doi.org/10.1109/MDAT.2013.2293757
http://dx.doi.org/10.1109/MDAT.2013.2293757
https://gatkforums.broadinstitute.org/gatk/discussion/4833/speed-up-haplotypecaller-on-ibm-power8-systems
https://gatkforums.broadinstitute.org/gatk/discussion/4833/speed-up-haplotypecaller-on-ibm-power8-systems
https://gatkforums.broadinstitute.org/gatk/discussion/4833/speed-up-haplotypecaller-on-ibm-power8-systems
http://dx.doi.org/10.1109/ipdpsw.2012.91
http://dx.doi.org/10.1186/s12859-016-0946-4
http://dx.doi.org/10.1186/s12859-016-0946-4
http://dx.doi.org/10.1109/BIBM.2016.7822645
http://dx.doi.org/10.1109/BIBM.2016.7822645
http://dx.doi.org/10.1177/1176934318760543
http://dx.doi.org/10.1177/1176934318760543
http://dx.doi.org/10.1109/sasp.2008.4570793
http://dx.doi.org/10.1109/sasp.2008.4570793
http://dx.doi.org/10.1109/fpl.2006.311203
http://dx.doi.org/10.1155/2012/752910
http://dx.doi.org/10.1109/ASAP.2018.8445119
http://dx.doi.org/10.1109/ASAP.2018.8445119
http://dx.doi.org/10.23919/FPL.2017.8056837
http://dx.doi.org/10.23919/FPL.2017.8056837
http://dx.doi.org/10.1109/BIBM.2016.7822616
http://dx.doi.org/10.1145/3020078.3021749
http://dx.doi.org/10.1145/3020078.3021749
http://dx.doi.org/10.1109/iccsnt.2015.7490869
http://dx.doi.org/10.1109/iscas.2018.8351474
http://dx.doi.org/10.1109/CoolChips.2016.7503681
http://dx.doi.org/10.1109/CoolChips.2016.7503681
http://dx.doi.org/10.1109/BIBM.2015.7359892
http://dx.doi.org/10.1109/BIBM.2015.7359892
https://github.com/broadinstitute/gatk/blob/master/docs/pair_hmm.pdf
https://github.com/broadinstitute/gatk/blob/master/docs/pair_hmm.pdf
https://github.com/MauricioCarneiro/PairHMM/tree/master/test_data
https://github.com/MauricioCarneiro/PairHMM/tree/master/test_data

