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An implementation of low latency address-mapping logic for
SSD controllers
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Abstract Solid-state drives (SSDs) are replacing hard-disk drives (HDDs)
because of their advantages of light weight, low power, and high speed.
A flash translation layer (FTL) is a key to achieving a high efficiency in
accessing an SSD. This letter presents an architecture to implement the
mapping between the logical address and the physical address as hard-
wired to reduce the workload of the FTL inside an SSD.
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1. Introduction

In the recent years, solid-state devices (SSDs) have become
the main storage owing to their higher bandwidth and
lower power consumption compared to hard disk drives
(HDDs) [1, 2]. Flash translation layer (FTL) is an inter-
mediate function in between host interface and flash mem-
ory controller to handle various tasks including address
mapping [3, 4, 5]. That is, a file name is translated to a
logical address (LA) in its file system, and a FTL [6, 7]
maps the logical address to physical address (PA) in the
flash memory in computer systems with an SSD. The basic
read or write unit in a SSD is called a page, and the logical
address of a file whose size is smaller than or equal to that
of a page is mapped to a logical page number (LPN). If a
file is bigger than a single page, multiple LPNs are allo-
cated to a single file, and the information about the list of
LPNs is stored by the FTL. Each LPN is mapped to a
Physical Page Number (PPN), which specifies a physical
location in the flash memories of the SSD.

Address-mapping schemes are classified as page-level
mapping, block-level mapping, and hybrid mapping [8, 9].
In page-level mapping, a logical address is mapped to a
physical address at a page granularity, which is the most
straightforward scheme at the expense of large storage
requirement. To reduce the space requirement, extensive
research has been conducted on page-level address map-
ping algorithms such as DFTL [6], OAFTL [10], K-CPM
[11], DAC [12], DVPFTL [13] and MVFTL [14]. Block-
level mapping requires much less space for the mapping
table but suffers from significant performance overhead
[5, 8, 15]. In hybrid mapping, a logic block is mapped to

a physical block using block level mapping algorithm, and
the page level algorithm is used to locate a page within a
block. Examples of hybrid mapping algorithms are FAST
[5], Superblock [16], LAST [17] and MAST [18]. Most
hybrid mapping algorithms suffer inefficient garbage col-
lection which seriously degrades the read-write perform-
ance and increases the wear of the SSD [9].

Many algorithms have been proposed to efficiently
perform address mapping exploiting various storage types.
An SSD controller typically consists of three layers of
memory hierarchy: SRAM cache, DRAM, and flash memo-
ry. The contents of the table are moved partially or fully from
flash memory to faster memory before the access by the FTL
to improve system performance. The original address-map-
ping tables are stored in the flash memory because the table
size was huge and the information in the tables must be
maintained even when the system is off, and most early SSD
controllers used a two-level memory hierarchy with the
SRAM cache and flash memory. Based on such a two-level
memory hierarchy, a demand-based Flash Translation Layer
(DFTL) [6] and CAST FTL [19] that selectively caches
page-level address mappings to the SRAM cache were
proposed. Unfortunately, the capacity of an SRAM is inher-
ently limited because of its size, power, and cost. In modern
SSD systems, DRAMs have been actively used to store the
address-mapping table, because they have shorter latency
than does a NAND flash memory, and bigger capacity than
that of a SRAM. One of the FTLs using DRAM is HP-FTL
[20]. Their main focus is to reduce the table size by encoding
PPN, which allows more entries to be stored in DRAM
instead of flash memory. Details on the table referencing
method, however, is not described in their work.

Another major trend in research on SSDs is to exploit
the spatial locality of the workloads. For example, S-FTL
[21] exploits spatial locality for an intelligent caching
strategy, and ZFTL [22] grouped the entire flash space into
multiple zones and cached only the information for a zone
based on locality analysis to DRAM. CDFTL [23] is an
on-demand page-level mapping FTL similar to DFTL. All
these approaches are too sensitive to file access patterns
and their performance degrade significantly if the work-
loads show weak locality. Many practical cases such as
massive databases or data processing applications, unfortu-
nately, show random access patterns [24]. Therefore, few
researches such as [25] and [26] transform random write
requests to sequential ones in hardware and virtualization
layer, respectively, to improve the random write latency
based on page-level mapping.
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The goal of this paper is to implement the mapping
function between LA and PPN optimized for short latency
in DRAM at cycle level. As summarized before, there have
been extensive research on algorithms and logics to effi-
ciently perform address mapping, but no work has ad-
dressed cycle-level optimization for DRAM-based L2P
table lookup. A key of the proposed architecture is to
interleave multiple banks of DRAM with a dynamic
scheduling algorithm to access DRAM.

2. Proposed address mapping algorithm

2.1 Overall configuration of address mapping tables
In our approach, the address-mapping information is stored
in two tables, the LA-PN Mapping Table (LPMT) and the
Block Table (BT). The LPMT stores entries consisting of a
logical address and the first page number of a file. LPMT,
again, consists of two tables; a primary LPMT and a
secondary LPMT as shown in Fig. 1. Each LPMT is con-
figured in a set-associative way, and each set in LPMT is
associated with a hash-key value. That is, a hash-key value
is computed for an LA, and the information on the LA-PN
pair is stored in the set associated with the hash-key value. If
the space for the set with a hash key is full, then additional
space for another set in a secondary table is allocated for the
same hash key, and the location of the additional space is
registered in the set of the primary table. That is, the storage
in the secondary table is used by the sets that need extra
spaces to accommodate exceptionally many LA-PN entries.
The maximum capacity of the LPMT is twice the size of
the total of LA-PN entries, because the worst case is that all
LA-PN entries are associated with only one hash key.

Each entry in LPMT consists of an LA-PN pair and two
other flag bits that indicate if the entry is valid and if the LA
is a single-page file. The latter flag is used to avoid the
unnecessary access by BT looking up the list of PNs for the
LA. If a file is not bigger than a single page, FTL can access
the physical location of the file simply by referring to the
LA-PN information in LPMT. Otherwise, FTL needs to
look up BT to obtain the list of PNs for the file.

BT stores the pages pertaining to a particular file in a
doubly linked list fashion. BT stores the information on a
list of PNs associated with a file using a linked-list type of
PN information to enable read, modify, and delete. For
each PN, PPid and NPid denotes previous page id and
next-page id sharing the same hash key value, respectively.
In addition to the valid flag, two extra flag bits are
appended to indicate if the PN is either a first page or a
last page. Each block of flash memory has its own BT. A

physical address consists of a block number and a page
number. For example, a file with the logical address 23d1 is
mapped to two pages: a physical address 01 000 for the first
page, 10 000 and 11 000 for the second and third pages.
Note that the three pages are virtually connected, as shown
in the BTs in Fig. 2 using the doubly linked list fashion.
Note that PPid of the first page for a file indicates the
location of the entry in a LPMT. For example, PPid 0 01 00
of the first entry in BT00 indicates the LA-PN pair in-
formation is in the primary LPMT by the first 0, in the
set01 by the following 01, and it is the first entry in the
LPMT by the last 00.

Note that, to maintain uniformity, even if a single
page is assigned to a file, the corresponding entry in BT
is marked as the first page, last page, and valid page. PPid,
in this case, points to the location of the corresponding
entry in LPMT.

The access time to LPMT is not predictable, because it
involves the hash function to locate the target set and the
secondary LPMT must be looked up in the worst case.
Another important factor in determining the access time to
LPMT is that the table resides in a DRAM whose access
time is determined various factors. Therefore, the reset of
the paper is focused on the scheme to improve the access
time to LPMT.

2.2 DRAM configuration for LPMT
Most DRAMs consist of multiple banks of memory cells,
row and column decoders, and a sense amplifier. For read
operations, the basic three steps are:
(1) a row-activation command is applied, and the row

data from a bank are copied to the sense amplifier;
(2) a read command with a column address is applied,

and the corresponding data are sent to the output bus;
and

(3) the sense amplifier is reset by a precharge command
to prepare for the next access.
Once a row-active strobe (RAS) signal becomes active,

the DRAM is in an active row status and the inputted row
address is decoded. The time taken to decode the row
address is the RAS-to-CAS delay (RCD). After the delay,

Fig. 1. LPMT configuration (NSid: ID of Next Set with the same hash
key value, V: Valid, PSid: ID of Previous Set with the same hash key
value)

Fig. 2. Complete address mapping tables configuration (V: Valid, S:
Single-page, WP: Write Pointer, PPid: Previous Page ID, NPid: Next Page
ID, F: First-page, L: Last-page)
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the column-active strobe (CAS) and the column address are
applied simultaneously. The delay from the CAS command
to the valid data output is the CAS latency. The following
figure shows the case where the same bank is accessed for
two different rows, with the worst-case latency between
the access of the last data from the previous transaction and
the access of the first data from the next transaction, which
is 18 cycles in Fig. 3.

If two consecutive transactions access addresses in
different rows, a precharge operation must be executed
before the execution of the row-activation command for
the second transaction. Commands to different banks can
be overlapped to save the cycles needed to set up a bank or
a row. Because RAS and CAS commands can be applied
to different banks independently, commands for multiple
transactions can be overlapped, which is called bank inter-
leaving as shown in Fig. 4.

The exact latency of DRAM access with multiple
banks is determined by various factors, such as bank and
rows of previous DRAM accesses. Fig. 5 shows a case
where previous DRAM access affects the latency of the last
DRAM access for a commercial four-banks DRAM [27].
Suppose that three different banks—denoted bank [t-1],
bank [t-2] and bank [t-3]—are accessed consecutively,
but the last accessed bank, bank [t], is the same as bank
[t-3]; i.e., bank 3, bank 1, bank 2, and bank 3 are accessed
in series. In such case, Fig. 5 shows that it is possible to
issue row active before the data transfer is finished. So
CAS1 and CAS2 come out immediately after CAS0 comes
out. However, since RAS3 uses the same bank as the first
bank, it can be row active after the data corresponding to
the first bank is transferred. As a result, the data for the
third bank transfer continuously, but the data for the fourth
bank can transfer after 15 cycles, which number was
derived as follows.

Table I shows the DRAM parameters used and Fig. 6
shows the latencies for various bank combinations when
different rows are accessed.

In order to minimize table-lookup latency while max-
imizing throughput, we propose two schemes as follows.
First, we distribute each set over the four banks in the

DRAM in order to use bank interleaving. Second, the
access order of a set over the four banks is dynamically
rearranged so that the bank interleaving effect is maxi-
mized. For example, if bank 0 was recently accessed, then
the banks other than bank 0 better be accessed in order
to increase the probability of bank interleaving. Fig. 7
shows the algorithm to record the order of banks recently
accessed. That is, accesst-3, accesst-2, accesst-1 and accesst
stores the bank numbers.

Then, when a new set is to be accessed, the four banks
are accessed in the order of accesst-3, accesst-2, accesst-1
and accesst.

3. Results and discussion

We modelled the proposed algorithm using C code with
parameters from a commercial DRAM [27]. In our imple-
mentation, the tables are sized to accommodate the work-
load financial1 that includes the largest number of files. For
example, financial1 includes 700,873 files; so the number
of entries in LPMT is set to 220, each set contains eight
entries, and there are 217 sets in LPMT.

Fig. 3. Latency without bank interleaving

Fig. 4. Latency with bank interleaving

Fig. 5. Read latency when bank½t� ¼ bank½t-3�, r½t� ≠ r½t-3�

Table I. DRAM parameters

Parameter Cycles

ROW active delay (RCD) 9

CAS latency (CL) 9

CAS to Precharge time (RTP) 5

CAS to CAS delay (CCD) 4

Precharge period (RP) 9

Data latency (DL) 4

Fig. 6. Read latency for r½t� ≠ r½t-n� where n ¼ minf1; 2; 3; 4g such
that b½t� ¼ b½t-n�

Fig. 7. Bank reordering algorithm

IEICE Electronics Express, Vol.16, No.21, 1–6

3



We assumed that a page size is 2KB, one block
contains 256 pages, and the SSD contains 4,096 blocks
(256 � 4;096 ¼ 1;048;576 ¼ 220 pages) which amounts
2GB in total capacity. Notice that the 2GB SSD can hold
financial1 as 710;875 < 220 (¼ 1;048;576), assuming all
file sizes are under 2KB. Table II show the various dimen-
sions of LPMT.

We first evaluated the utilization of the primary LPMT
table using four hashing functions: the shifting method
[28], the division method [29], the folding method [29],
and the radix transformation method [30]. Table III shows
the characteristics of the SPC workload and Table IV
shows the occupancy rates of Primary LPT for various
hashing functions. Three hash-key functions combined
with the proposed algorithm led the primary LPMT table
to be occupied more than 90%, except for Websearch 2 and
Websearch 3, which have a monotonic logical addresses
pattern, i.e., the addresses in the two workloads are all
multiples of four.

Table V shows latencies for various combinations of
DRAM access in terms of banks and row address changes
for LPMT lookup. For example, b½t� ¼ b½t-1� indicates that
a subsequent dram access occurred to the same banks.
Notice that our hash-key assignment policy led to a dis-

tribution that is more favorable than when bank interleav-
ing is not considered.

Table VI shows the average latencies for three address-
ing algorithms: only one bank is used, each set is mapped
to one of the four banks in turn, and the proposed dynamic
re-ordering algorithm. Among the four hashing functions,
the folding function with the worst performance in terms
of set-distribution is used. The four-bank fixed-order
algorithm shows a speed gain solely because of using
bank interleaving, which amounts to 11.91% on average,
and the proposed algorithm shows an additional speed gain
of 4.37% on average.

Fig. 8 shows the average latencies for each tenth of the
progress of a workload. In general, the latencies increase as
more files are accumulated in the flash memory because it
takes longer to look up the table as address-mapping tables
are filled up. Financial2 and MSR workloads show that the
improvement factors of the proposed algorithm increase as
the table fills up.

Table II. LPMT dimensions

Parameter Size Comment

Row numbers 220 256 (28) Pages per Block

Row width 42 bits 20(LA) + 20(PA) + 2(VS)

LA width 20 bits

PA width 20 bits Block Table ID(12 bits) + # BT Rows (8)

Table III. Workload characteristics

Workload
Req. Size
(KB)

Read
(%)

Sequential
Read (%)

Sequential
Write (%)

Financial 1 3.38 23.16 1.61 0.01

Financial 2 2.39 82.35 0.94 0.22

MSR 29.812 34 0 0

Websearch 1 15.15 99.98 0 0

Websearch 2 15.07 99.98 0 0

Websearch 3 15.41 99.97 0 0

Table IV. Primary LPMT occupancy statistics

Workload
Shifting
(%)

Folding
(%)

Radix
(%)

Division
(%)

Financial 1 99.13 78.23 99.05 98.89

Financial 2 92.45 72.01 92.39 92.05

MSR 94.09 79.23 96.98 20.52

Websearch 1 100 100 100 78.77

Websearch 2 71.92 71.92 100 67.78

Websearch 3 71.37 70.64 100 61.30

Table V. DDR read access latencies statistics

Row r½t� ≠ r½t-n� where n ¼ minf1; 2; 3; 4g such that b½t� ¼ b½t-n� r½t� ¼
r½t-n�

b½t� ≠ b½t-1�
b½t� ≠ b½t-2�

Bank
b½t� ≠ b½t-3�

b½t� b½t� b½t� b½t� b½t� b½t�
= = = = ≠ =

b½t-1� b½t-2� b½t-3� b½t-4� b½t-4� b½t-n�

Latency 23
23- 23- 23-

4 4P1

n¼1
DL

½t � n�
P2

n¼1
DL

½t � n�
P3

n¼1
DL

½t � n�

Single
Bank
(%)

8.86 0 0 0 4.84 84.31

4 Banks
fixed
order
(%)

4.28 0 0 0 8.53 87.18

4 Banks
dynamic
order
(%)

0 0 0 8.68 3.83 87.49

Table VI. Average latency (ns) & average improvement ratio over
single bank (%)

Single Bank
4 Banks

Fixed Order
4 Banks

Dynamic Order

Financial1 90.95 83.07 74.87

Financial2 91.59 87.72 82.05

MSR 98.62 89.56 86.84

Websearch1 69.47 57.20 55.16

Websearch2 71.14 59.71 57.80

Websearch3 70.64 59.58 57.73

Δ (%) - 11.91 16.28
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4. Conclusion

We presented a hardware-based address-mapping logic in
this paper. A bank-interleaving scheme is applied to reduce
the access time for the address-mapping table stored in
DRAM. Our main contribution is to maximally utilize bank
interleaving by dynamically rearranging bank access or-
ders. This scheme is very effective when DRAM access
pattern is irregular, as is the case for address mapping logic
for SSD controllers.
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