
LETTER

Novel bit-serial semi-systolic array structure for simultaneously
computing field multiplication and squaring

Atef Ibrahim1,2,3a)

Abstract This paper presents a novel bit-serial semi-systolic array struc-
ture to simultaneously execute modular multiplication and squaring oper-
ations in GF(2m). The architecture is explored by using a systematic
methodology based on the proper choice of the scheduling and projection
vectors applied to the algorithm dependency graph. The explored archi-
tecture has the advantage of sharing the data-path between the two
operations, and hence it leads to saving more space compared to the case
of using a separate data-path for each operation. Also, the simultaneous
calculation of both operations significantly decreases the execution time
required to perform modular exponentiation operation, as it mainly de-
pends on these two core operations. Complexity analysis indicates that the
developed bit-serial semi-systolic array structure outperforms the latest
exiting competitor bit-serial systolic and non-systolic structures in terms of
area-time (AT) by at least 24%. This makes the proposed structure more
appropriate for use in resource-constrained cryptographic processors.
Keywords: systolic arrays, cryptoprocessor, field exponentiation, field
multiplication, field squaring, parallel computing
Classification: Integrated circuits

1. Introduction and related work

Modular multiplication and squaring operations are at the
heart of modular exponentiation. Thus, the performance of
the modular exponentiation operation is mainly affected by
the performance of these two operations. There are various
hardware structures, in GF(2m), developed to increase the
performance of these crucial operations [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12]. Unluckily, these hardware implementations
mainly concentrate on increasing performance of multi-
plication operation and do not support the unified structures
used to simultaneously compute both operations. Thus, they
limit the use of modular exponentiation in several resource-
constrained cryptographic and error-correcting codes appli-
cations due to their considerable area and time overhead.

There are several unified systolic and semi-systolic
array structures presented in the literature to concurrently

execute both modular multiplication and squaring opera-
tions in GF(2m). Choi et al. [13] presented an approach for
merging both operations in a combined systolic array
structure. The proposed approach has the merit of reducing
the space overhead of the systolic array as well as improv-
ing its utilization. They developed bit-serial and bit-parallel
systolic array structures based on the proposed approach.
Kim et al. [14], presented a bit-parallel systolic array
structure based on the unified algorithm reported in [15].
This algorithm is based on the bipartite method discussed
in [16]. In this method, the operand multiplier is divided
into two parts that can be executed in parallel leading to a
significant reduction in algorithm latency. Also, Kim et al.
[17] presented a unified bit-parallel semi-systolic array
structure to concurrently execute modular multiplication
and squaring in GF(2m). The developed structure is based
on the Montgomery multiplication algorithm.

On the other hand, there are conventional (Non-sys-
tolic) architectures used to separately perform both oper-
ations based on the Mastrovito multiplier algorithm. The
efficient serial architectures that are suitable for the targeted
resource-constrained applications are the architectures of
[18, 19]. These architectures are extracted based on the
irreducible ω-nomial (polynomials with ω non-zero terms)
and trinomials and have lower critical pass delay compared
to the previously reported results.

In this paper, we present a novel bit-serial semi-sys-
tolic array structure to concurrently execute multiplication
and squaring in GF(2m) based on the bipartite multiplica-
tion-squaring algorithm reported in [15]. The structure is
explored by using a systematic methodology consists of the
following three steps: 1) extracting the algorithm depend-
ency graph (DG); 2) assigning time values to each node of
the DG based on a chosen scheduling vector; 3) Proper
projection of several nodes of the DG to a specific process-
ing element (PE) cell based on a chosen projection vector.
The developed bit-serial semi-systolic array structure has
lower area and AT complexities compared to the existing
most recent bit-serial systolic and non-systolic structures of
[13, 18, 19]. This enables the use of the proposed bit-serial
array structure in different resource-constrained crypto-
graphic and error-correcting code applications.

The paper is arranged as follows: Section 2 briefly
explains the adopted bipartite multiplication-squaring algo-
rithm. Section 3 gives the hardware details of the devel-
oped bit-serial semi-systolic array. Section 4 provides the
complexity analysis of the developed and related bit-serial
structures. Section 5 provides the work conclusion.

DOI: 10.1587/elex.16.20190600
Received September 26, 2019
Accepted October 21, 2019
Publicized November 11, 2019
Copyedited December 10, 2019

1Depatment of Computer Engineering, College of Computer
Engineering and Sciences, Prince Sattam Bin Abdulaziz
University, Al-Kharj 11942, Saudi Arabia
2Microelectronics Department, Electronics Research Institute,
Cairo, Egypt
3ECE Department, University of Victoria, Victoria, BC,
Canada
a) attif_ali2002@yahoo.com

IEICE Electronics Express, Vol.16, No.23, 1–6

1

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers



2. Bipartite multiplication and squaring algorithm in
GF(2m)

The details of the bipartite multiplication and squaring
algorithm in GF(2m) are stated in [14, 15]. In this section,
we only provide a brief discussion about this algorithm to
help understand the developed design.

Let CðxÞ and DðxÞ represent any two polynomial
elements in GF(2m). Also, let FðxÞ be the irreducible
polynomial used to produce the filed elements of this field.
These polynomials can be expressed as:

CðxÞ ¼
Xm�1
j¼0

cjx
j ð1Þ

DðxÞ ¼
Xm�1
j¼0

djx
j ð2Þ

FðxÞ ¼
Xm
j¼0

fjx
j ð3Þ

where coefficients cj; dj; fj 2 GFð2Þ.
Since x is a root of FðxÞ, xm modFðxÞ and

xmþ1 modFðxÞ can be expressed as follows:

xm modFðxÞ ¼
Xm�1
j¼0

fjx
j ð4Þ

xmþ1 modFðxÞ ¼
Xm�1
j¼1

ðfm�1fj þ fj�1Þxj þ fm�1f0

ffi F 0ðxÞ ¼
Xm�1
j¼0

f0
j x

j ð5Þ

Assume F 0ðxÞ is available in advance and Let l ¼ dm=2e,
k ¼ bm=2c. We can express the modular multiplication and
squaring as:

PðxÞ ¼ CðxÞDðxÞmodFðxÞ

¼
Xm�1
i¼0

diCðxÞxi modFðxÞ ð6Þ

¼
Xl�1
i¼0

d2iCðxÞx2i þ x
Xk�1
i¼0

d2iþ1CðxÞx2i
 !

modFðxÞ

SðxÞ ¼ CðxÞCðxÞmodFðxÞ

¼
Xm�1
i¼0

ciCðxÞxi modFðxÞ ð7Þ

¼
Xl�1
i¼0

c2iCðxÞx2i þ x
Xk�1
i¼0

c2iþ1CðxÞx2i
 !

modFðxÞ

We can split PðxÞ and SðxÞ into two portions as:

PðxÞ ¼ ðHðxÞ þ xGðxÞÞmodFðxÞ ð8Þ
SðxÞ ¼ ðVðxÞ þ xUðxÞÞmodFðxÞ ð9Þ

where,

HðxÞ ¼
Xl�1
i¼0

d2iCðxÞx2i modFðxÞ ð10Þ

GðxÞ ¼
Xk�1
i¼0

d2iþ1CðxÞx2i modFðxÞ ð11Þ

VðxÞ ¼
Xl�1
i¼0

c2iCðxÞx2i modFðxÞ ð12Þ

UðxÞ ¼
Xk�1
i¼0

c2iþ1CðxÞx2i modFðxÞ ð13Þ

The term CðxÞx2i modFðxÞ is common in Eqs. (10), (11),
(12), and (13) and can be defined as CiðxÞ ¼
Ci�1ðxÞx2 modFðxÞ, where C0ðxÞ ¼ CðxÞ and 0 � i �
l � 1. Using Eqs. (4) and (5), we can formulate CiðxÞ as:

CiðxÞ ¼ Ci�1ðxÞx2 modFðxÞ

¼
Xm�1
j¼0

ci�1j xjþ2 modFðxÞ

¼
Xm�1
j¼0

ðci�1j�2 þ ci�1m�2fj þ ci�1m�1f
0Þxj ð14Þ

where C0 ¼ C, ci�1�2 ¼ ci�1�1 ¼ 0, and 1 � i � l � 1.
We can formulate the coefficients of CiðxÞ; cij, as:

cij ¼ ci�1j�2 þ ci�1m�2fj þ ci�1m�1f
0 ð15Þ

where c0j ¼ cj, ci�1�2 ¼ ci�1�1 ¼ 0, and 1 � i � l � 1.
We can express HðxÞ; GðxÞ; VðxÞ; UðxÞ based on (14)

as:

HðxÞ ¼
Xl
i¼1

d2ði�1ÞCi�1ðxÞ ð16Þ

GðxÞ ¼
Xk
i¼1

d2i�1Ci�1ðxÞ ð17Þ

VðxÞ ¼
Xl
i¼1

c2ði�1ÞCi�1ðxÞ ð18Þ

UðxÞ ¼
Xk
i¼1

c2i�1Ci�1ðxÞ ð19Þ

The recurrence equations of HðxÞ; GðxÞ; VðxÞ; UðxÞ can be
expressed as:

HiðxÞ ¼ Hi�1ðxÞ þ d2ði�1ÞCi�1ðxÞ ð20Þ
GiðxÞ ¼ Gi�1ðxÞ þ d2i�1Ci�1ðxÞ ð21Þ
V iðxÞ ¼ V i�1ðxÞ þ c2ði�1ÞCi�1ðxÞ ð22Þ
UiðxÞ ¼ Ui�1ðxÞ þ c2i�1Ci�1ðxÞ ð23Þ

where H0ðxÞ ¼ G0ðxÞ ¼ V 0ðxÞ ¼ U0ðxÞ ¼ 0, HiðxÞ ¼Pm�1
j¼0 hij x

j, GiðxÞ ¼Pm�1
j¼0 gij x

j, V iðxÞ ¼Pm�1
j¼0 vij x

j,
UiðxÞ ¼Pm�1

j¼0 uijx
j are the i th intermediate results.

We can express the coefficients of HiðxÞ; GiðxÞ;
V iðxÞ; UiðxÞ in the recursive form as:

IEICE Electronics Express, Vol.16, No.23, 1–6

2



hij ¼ hi�1j þ d2ði�1Þci�1j ; for 1 � i � l ð24Þ
gij ¼ gi�1j þ d2i�1ci�1j ; for 1 � i � k ð25Þ
vij ¼ vi�1j þ c2ði�1Þci�1j ; for 1 � i � l ð26Þ
uij ¼ ui�1j þ c2i�1ci�1j ; for 1 � i � k ð27Þ

where h0j ¼ g0j ¼ v0j ¼ u0j ¼ 0 and 0 � j � m � 1.
Eqs. (24) to (27) can be computed concurrently as there
is no data dependency between them.

PðxÞ and SðxÞ can be calculated based on Eqs. (8) and
(9) as follows:

PðxÞ ¼ ðHlðxÞ þ xGkðxÞÞmodFðxÞ

¼
Xm�1
j¼0

ðhlj þ gkm�1fj þ gkj�1Þxj ð28Þ

SðxÞ ¼ ðV lðxÞ þ xUkðxÞÞmodFðxÞ

¼
Xm�1
j¼0

ðvlj þ ukm�1fj þ ukj�1Þxj ð29Þ

where gk�1 ¼ uk�1 ¼ 0.
Based on Eqs. (28) and (29), we can calculate the

coefficients of PðxÞ; SðxÞ as follows:
pj ¼ hlj þ gkm�1fj þ gkj�1 ð30Þ
sj ¼ vlj þ ukm�1fj þ ukj�1 ð31Þ

where gk�1 ¼ uk�1 ¼ 0 and 0 � j � m � 1.

3. Proposed bit-serial semi-systolic array

We used the recursive equations of (15), (24), (25), (26),
(27), (30), and (31) to explore the dependency graph (DG)
shown in Fig. 1. Since the equations have two indices i and
j, the DG should be represented in the 2-D integer domain.
The rows and columns of the DG are indicated by the
indices of i and j, respectively. Circles in DG represent the
operations performed by the recursive Eqs. (15), (24), (25),
(26), (27), (30), and (31). Fig. 1 indicates that the DG is
mainly consists of two sections: the upper section and
lower section. The upper section represents the first l rows
of DG and it calculates the coefficients of C;H;G; V; U
based on Eqs. (15), (24), (25), (26), (27), respectively.
The lower section represents the last row of the DG and
it computes the coefficients of P and S based on equations
(30) and (31), respectively. The initial bits c0j , h

0
j , g

0
j, v

0
j, u

0
j,

c0j, fj and f0
j are the inputs to the nodes of the upper

section of the DG. In this section, the partial results of
hij, g

i
j, v

i
j and uij alongside the transmitted input bits of fj

and f0
j are represented by the vertical lines. The diagonal

red lines in this section indicates the computed partial
results of cij. Also, the input bits of c2ði�1Þ; c2i�1; d2ði�1Þ;
d2i�1 alongside the resulted partial bits of ci�1m�2; c

i�1
m�1 are

broadcasted horizontally to all nodes of this section. The
output bits of hlj; g

k
j; v

l
j; u

k
j produced from the upper section

alongside the transmitted bits of fj are fed as inputs to the
lower section of the DG to compute the bits of modular
multiplication pj and squaring sj as shown in Fig. 1.

We used the approach previously reported in [20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30] to obtain the scheduling
vector S ¼ ½2 � 1� and the projection vector P ¼ ½1 0�T .

These vectors are used to assign different time values to
each node in the DG and project several nodes of the DG to
a specific PE cell. Fig. 1 also shows the resulted node
timing. The adopted timing results in a serial feeding of
the inputs and outputs of the DG.

Fig. 2 shows the resulted semi-systolic array structure
after applying the projection vector P ¼ ½1 0�T to the DG.
It consists of l þ 1 PEs, where l ¼ dm=2e. PEs are classi-
fied into three types as follows: PEi, PEl, and PElþ1. PEi

represents the first l � 1 PEs, while PEl, and PElþ1 repre-
sent the l th and ðl þ 1Þ th PEs, perspectively. PEl is a
simplified version of PEi where there is no need to com-
pute cij in this PE. PElþ1 is the last PE used to compute the
bits of modular multiplication (pj) and squaring (sj) ac-
cording to Eqs. (30) and (31), respectively. As we notice
from Fig. 2, bits of uij, v

i
j, g

i
j, h

i
j, and fj are pipelined

between all the PEs. Bits of cij are pipelined between
the first l PEs. Bits of cij�1, c

i
j�2, f

0
j, 0 � j � m � 1, are

pipelined between only the first l � 1 PEs. Bits of c2ði�1Þ;
c2i�1; d2ði�1Þ; d2i�1 are located at the first l PEs.

Fig. 3 shows the logic details of each PE. The last two
bits ci�1m�2; c

i�1
m�1 are held in PEi at clock cycles 3ði � 1Þ þ 2,

1 � i � l � 1, using the MUX-Latch combinations shown
in Fig. 3(a). Also, the last two bits ukm�1 and gkm�1 are held
in PElþ1 at clock cycles 3l þ 2 using the MUX-Latch
combinations shown in Fig. 3(c). Select signal Sin is pipe-
lined between the PEs through the Ds latches to control the
MUXes to synchronize the latching process.

The following briefly describes the operation of the
developed semi-systolic array.
1) At the first clock cycle t ¼ 1, the select input of the

two MUXes, shown in Fig. 3(a), sets (i.e., Sin ¼ 1) in
PE1 to pass the last two input bits c0m�1 and c0m�2 to
be used alongside the input bits c0; c1; d0; d1; c

0
m�3;

u0m�1; v
0
m�1; g

0
m�1; h

0
m�1; fm�1; f0

m�1 to compute the in-
termediate bits c1m�1; u

1
m�1; v

1
m�1; g

1
m�1; h

1
m�1. Notice

Fig. 1. DG and node timing of the unified multiplication-squaring
algorithm for m ¼ 5. Each node contains a different time value.

IEICE Electronics Express, Vol.16, No.23, 1–6

3



that input signals ci�1j ; ci�1j�1; c
i�1
j�2 shown in PEi,

Fig. 3(a), will be assigned the values of c0m�1, c
0
m�2,

and c0m�3 at this clock cycle.
2) At the second clock cycle t ¼ 2, the select input of the

two MUXes resets (i.e., Sin ¼ 0) in PE1 to hold the
last two bits of c0m�1 and c0m�2 to be used alongside
input bits c0, c1, d0, d1, c0m�3, c

0
m�4, u

0
m�2, v

0
m�2, g

0
m�2,

h0m�2, fm�2 and f0
m�2 to update the intermediate

bits c1m�2; u
1
m�2; v

1
m�2; g

1
m�2; h

1
m�2.

3) Through clock cycles 3 � t � m, the remaining input
bits of PE1, c0j , c0j�2, u0j, v0j, g0j, h0j , fj and f0

j,
0 � j � m � 3, besides the located bits c0; c1; d0; d1
and kept bits c0m�1; c

0
m�2 are used to compute

the intermediate bits c1j; u
1
j; v

1
j; g

1
j; h

1
j, 0 � j � m � 3.

4) At clock cycles t ¼ 3ði � 1Þ þ 1, 2 � i � k, PEi starts
running precisely like PE1 and sets the MUXes (i.e.,
Sin ¼ 1) to pass the last two input bits ci�1m�1 and ci�1m�2
to be used alongside bits c2ði�1Þ; c2i�1; d2ði�1Þ; d2i�1;
ci�1m�3; u

i�1
m�1; v

i�1
m�1; g

i�1
m�1; h

i�1
m�1; fm�1; f0

m�1 to compute
the intermediate bits cim�1; u

i
m�1; v

i
m�1; g

i
m�1; h

i
m�1.

5) At clock cycles t ¼ 3ði � 1Þ þ 2, 2 � i � k, the select
input of the two MUXes resets (i.e., Sin ¼ 0) in PEi to
hold the last two bits of ci�1m�1 and ci�1m�2 to be used
alongside input bits c2ði�1Þ, c2i�1, d2ði�1Þ, d2i�1, ci�1m�3,
ci�1m�4, ui�1m�2, vi�1m�2, gi�1m�2, hi�1m�2, fm�2 and f0

m�2 to
update the intermediate bits cim�2; u

i
m�2; v

i
m�2; g

i
m�2;

him�2.
6) Through clock cycles t � 3ði � 1Þ þ ðm � jÞ, 2 �

i � k and 0 � j � m � 3, the remaining input bits
of PEi, ci�1j , ci�1j�2, u

i�1
j , vi�1j , gi�1j , hi�1j , fj and f0

j,
2 � i � k and 0 � j � m � 3, besides the located bits
c2ði�1Þ; c2i�1; d2ði�1Þ; d2i�1 and kept bits ci�1m�1; c

i�1
m�2

are used to compute the intermediate bits cij; u
i
j;

vij; g
i
j; h

i
j, 2 � i � k and 0 � j � m � 3.

7) Through clock cycles t � 3ðl � 1Þ þ ðm � jÞ, 0 � j �
m � 1, PEl runs exactly like PEi to update the inter-
mediate bits, ukj; v

l
j; g

k
j; h

l
j, 0 � j � m � 1. Notice

that there is no need to update clj signal in PEl. Also
notice that when l ≠ k (this means that l is odd) the
located bits of c2i�1 and d2i�1 will be assigned zero
values resulting in the updated values of ulj and glj
remains the same as the previous values of ukj and
gkj resulted from PEk (i.e., ulj ¼ ukj and glj ¼ gkj).
On the other hand, when l ¼ k (this means that l is
even) all the located bits c2ðl�1Þ; c2l�1; d2ðl�1Þ; d2l�1
will be assigned zero values leading to ulj ¼ ukj,
vlj ¼ vkj, g

l
j ¼ gkj, h

l
j ¼ hkj, 0 � j � m � 1.

8) Through clock cycles t � 3ðlÞ þ ðm � jÞ, 0 � j �
m � 1, PElþ1 runs to compute serially the bits of
modular multiplication pj and squaring sj. It is worth
noting that the control signal Sin is set (Sin ¼ 1) at
clock cycle t ¼ 3ðlÞ þ 1 to pass the last bits ukm�1 and
gkm�1 through the MUXes of PElþ1 and it resets
(Sin ¼ 0) at the beginning of clock cycle t ¼ 3ðlÞ þ 2

to hold these bits inside PElþ1 to be used through the
remaining cock cycles. Also, it is worth noting that
some D-latches are added before the XOR gate inputs
in PEi and PElþ1 to decrease the critical path delay
(CPD) and hence increasing the clock frequency. This
leads to obtaining the final result after 3l þ m þ 1

clock cycles instead of 3l þ m clock cycles.

4. Complexity analysis

We used NanGate (15 nm, 0.8V) Open Cell Library to
estimate the area (A) and delay (T) of the basic cells
(2-input AND gate, 2-input XOR gate, 2-to-1 MUX, and
D-latch) in terms of 2-input NAND gate. Based on the
estimated values of the basic cells, we evaluated the area
and time complexities of the proposed and compared
efficient serial structures of [13, 18, 19] as shown in
Tables I and II, respectively. Choi design [13] is a systolic
serial structure while Masoleh designs [18, 19] are non-
systolic serial structures. Masoleh designs are extracted
based on the irreducible ω-nomials (irreducible polyno-
mials with ω non-zero terms) and trinomials. The trino-
mial-based designs have better performance and thus they
are selected here for comparison. The estimated area and
delay of the basic cells are as follows: AAND ¼ 1:2, TAND ¼

Fig. 3. Logic details of PEs. (a) PEi. (b) PEl. (c) PElþ1. The square
boxes inside PEs represent D-latches.Fig. 2. Proposed serial semi-systolic array structure.

IEICE Electronics Express, Vol.16, No.23, 1–6

4



11:3 ps, AXOR ¼ 2:5, TXOR ¼ 12:7 ps, AMUX ¼ 2:5, TMUX ¼
12:4 ps, ALatch ¼ 2:8, TLatch ¼ 16:6 ps.

In Table I, we estimated the total gate count (TGC) of
each array structure in terms of the field size m based on the
area values of the basic cells. In Table II, we multiplied the
estimated latency of each design by the corresponding
critical path delay (CPD) to obtain the total delay (TD).
The Area-Time (AT) complexity of each array structure is
also given in this table and it is estimated by multiplying
TGC of each array structure with the corresponding TD.
By examining the expressions given in Tables I, we can
deduce that the total area (TGC) of the basic cells of the
proposed serial structure, H9 ¼ 71:7m � 7:9, is lower than
that of the other serial structures. Also, the expressions
given in Table II show that the total delay of the proposed
serial structure, TD4 ¼ 91m þ 36:4, is lower than that of
the other serial structures. Moreover, the AT complexity of
the proposed serial structure, AT4 ¼ 6;520m2 � 2;464m �

287:56, is significantly lower than that of the other serial
structures by at least 24% as shown in Table III. The
evaluated throughput of the compared structures is given
in Table II and the given results show that all structures
have same throughput. Based on the analytical analysis
given in Tables I and II, we quantified the amount of area
(A), total computation Time (T), and area-time (AT) for
m ¼ 233 and t ¼ 74 as shown in Table III. The attained
results indicate that the developed bit-serial array structure
outperforms the compared ones in AT by at least 24%. This
makes it more suitable for use in resource-constrained
cryptographic processors.

5. Summary and conclusion

In this paper, we developed a unified bit-serial semi-sys-
tolic array structure that simultaneously computes both
modular multiplication and squaring operations in GF(2m).
The shared data-path between the two operations acquires
the advantage of reducing the area overhead compared to
using a separate data path for each operation. Also, the
concurrent computation of both operations leads to signifi-
cantly increasing the execution speed of the modular ex-
ponentiation operation. The obtained results display that
the developed bit-serial array structure outperforms the
most recent exiting competitor serial structures in terms
of area-time (AT). This makes it more suitable for use in
resource-constrained cryptographic processors.

Acknowledgments

The author would like to acknowledge the support of
the Deanship of Scientific Research at Prince Sattam Bin
Abdulaziz University under the research project # 2019/
01/10761.

References

[1] C. W. Chiou, et al.: “Concurrent error detection in montgomery
multiplication over gf(2m),” IEICE Trans. Fundam. Electron. Com-
mun. Comput. Sci. E89-A (2006) 566 (DOI: 10.1093/ietfec/e89-a.
2.566).

[2] W. T. Huang, et al.: “Concurrent error detection and correction in a
polynomial basis multiplier over gf(2m),” IET Inf. Secur. 4 (2010)
111 (DOI: 10.1049/iet-ifs.2009.0160).

[3] K.-W. Kim and J.-C. Jeon: “Polynomial basis multiplier using
cellular systolic architecture,” IETE J. Res. 60 (2014) 194 (DOI:
10.1080/03772063.2014.914699).

[4] K. W. Kim and J. C. Jeon: “A semi-systolic montgomery multiplier
over gf(2m),” IEICE Electron. Express 12 (2015) 20150769 (DOI:
10.1587/elex.12.20150769).

[5] K. J. Lee and K. Y. Yoo: “Linear systolic multiplier/squarer for fast
exponentiation,” Inf. Process. Lett. 76 (2000) 105 (DOI: 10.1016/
S0020-0190(00)00131-9).

[6] J.-C. Ha and S.-J. Moon: “A common-multiplicand method to the
montgomery algorithm for speeding up exponentiation,” Inf. Proc-
ess. Lett. 66 (1998) 105 (DOI: 10.1016/S0020-0190(98)00031-3).

[7] Y. Y. Hua, et al.: “Low space complexity digit-serial dual basis
systolic multiplier over gf(2m) using hankel matrix and karatsuba
algorithm,” IET Inf. Secur. 7 (2013) 75 (DOI: 10.1049/iet-ifs.2012.
0227).

[8] C. C. Chen, et al.: “Scalable and systolic Montgomery multipliers
over GF(2m),” IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. E91-A (2008) 1763 (DOI: 10.1093/ietfec/e91-a.7.1763).

[9] S. Kumar, et al.: “Optimum digit serial multipliers for curve-based

Table I. Area of various serial structures in terms of m.

Design AND XOR MUX Latch TGC

Choi [13] 3m 3m 3m 14m 78:8m

Masoleh [18] H1ð1Þ H2ð1Þ 0 H3ð1Þ H4ð1Þ

Masoleh [19] H5ð2Þ H6ð2Þ 0 H7ð2Þ H8ð2Þ

Proposed 6lð3Þ 6l þ 2 2l 27l � 3 H9ð4Þ

(1) H1 ¼ 5m þ 3, H2 ¼ 5m þ 2t � 4, H3 ¼ 19m þ 4t � 4, H4 ¼
176:4m þ 8:1t � 12:1, where t is the power of the second trinomial term,
(xm þ xt þ 1).
(2) H5 ¼ 7m þ 6, H6 ¼ 7m þ 6, H7 ¼ 18m � 2t � 2, H8 ¼ 179:1m �
5:6t � 16:7

(3) l ¼ dm=2e.
(4) H9 ¼ 71:7m � 7:9.

Table II. Delay of various serial structures in terms of m.

Design Latency CPD TD AT Th.

Choi [13] 3m � 1 �ð4Þ2 TD1ð2Þ AT1ð1Þ 1
m

Masoleh [18] m �ð3Þ1 TD2ð2Þ AT2ð1Þ 1
m

Masoleh [19] m �ð5Þ3 TD3ð2Þ AT3ð1Þ 1
m

Proposed 3l þ m þ 1 �ð4Þ2 TD4ð2Þ AT4ð1Þ 1
m

(1) AT1 ¼ 8;605m2 � 2;868m, AT2 ¼ ð6;473:9 þ 2;240:3dlog2ðmÞeÞm2 þ
ð297:3 þ 102dlog2ðmÞeÞmt � ð444:1 þ 153:7dlog2ðmÞeÞm, AT3 ¼
ð6;573 þ 2;274:6dlog2ðmÞeÞm2 � ð205:5 þ 71:1dlog2ðmÞeÞmt � ð612:9 þ
212:1dlog2ðmÞeÞm, AT4 ¼ 6;520m2 � 2;464m � 287:56

(2) TD1 ¼ 109:2m � 36:4, TD2 ¼ 12:7mdlog2ðmÞe þ 36:7m, TD3 ¼
12:7mdlog2ðmÞe þ 11:3m, TD4 ¼ 91m þ 36:4

(3) �1 ¼ TAND þ ð2 þ dlog2ðmÞeÞTXOR
(4) �2 ¼ TAND þ TXOR þ TMUX

(5) �3 ¼ TAND þ dlog2ðmÞeTXOR

Table III. Area and time values of serial structures for m ¼ 233 and
t ¼ 74.

Design
A

[Kgates]
T
[ns]

AT %AT

Choi [13] 18 25 467 24

Masoleh [18] 42 32 1344 73

Masoleh [19] 41 26 1066 67

Proposed 16 21 357 -

IEICE Electronics Express, Vol.16, No.23, 1–6

5

http://dx.doi.org/10.1093/ietfec/e89-a.2.566
http://dx.doi.org/10.1093/ietfec/e89-a.2.566
http://dx.doi.org/10.1049/iet-ifs.2009.0160
http://dx.doi.org/10.1080/03772063.2014.914699
http://dx.doi.org/10.1080/03772063.2014.914699
http://dx.doi.org/10.1587/elex.12.20150769
http://dx.doi.org/10.1587/elex.12.20150769
http://dx.doi.org/10.1016/S0020-0190(00)00131-9
http://dx.doi.org/10.1016/S0020-0190(00)00131-9
http://dx.doi.org/10.1016/S0020-0190(98)00031-3
http://dx.doi.org/10.1049/iet-ifs.2012.0227
http://dx.doi.org/10.1049/iet-ifs.2012.0227
http://dx.doi.org/10.1093/ietfec/e91-a.7.1763


cryptography,” IEEE Trans. Comput. 55 (2006) 1306 (DOI: 10.
1109/TC.2006.165).

[10] C. H. Kim, et al.: “A digit-serial multiplier for finite field GF(2m),”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13 (2005) 476
(DOI: 10.1109/TVLSI.2004.842923).

[11] S. Bayat-Sarmadi, et al.: “Dual basis super-serial multipliers for
secure applications and lightweight cryptographic architectures,”
IEEE Trans. Circuits Syst. II, Exp. Briefs 61 (2014) 125 (DOI: 10.
1109/TCSII.2013.2291075).

[12] C.-Y. Lee, et al.: “New digit-serial three-operand multiplier over
binary extension fields for high-performance applications,” 2nd
IEEE International Conference on Computational Intelligence and
Applications (ICCIA) (2017) 17415249 (DOI: 10.1109/CIAPP.
2017.8167267).

[13] S. Choi and K. Lee: “Efficient systolic modular multiplier/squarer
for fast exponentiation over gf(2m),” IEICE Electron. Express 12
(2015) 20150222 (DOI: 10.1587/elex.12.20150222).

[14] K. W. Kim and S. H. Kim: “Efficient bit-parallel systolic archi-
tecture for multiplication and squaring over gf(2m),” IEICE
Electron. Express 15 (2018) 20171195 (DOI: 10.1587/elex.14.
20171195).

[15] K.-W. Kim, et al.: “Efficient combined algorithm for multiplication
and squaring for fast exponentiation over finite fields gf(2m),” 7th
International Conference on Emerging Databases (EDB) (2017) 50
(DOI: 10.1007/978-981-10-6520-0_6).

[16] E. M. Kaihara and N. Takagi: “Bipartite modular multiplication
method,” IEEE Trans. Comput. 57 (2008) 157 (DOI: 10.1109/TC.
2007.70793).

[17] K. W. Kim and J. D. Lee: “Efficient unified semi-systolic arrays for
multiplication and squaring over gf(2m),” IEICE Electron. Express
14 (2017) 20170458 (DOI: 10.1587/elex.14.20170458).

[18] A. Reyhani-Masoleh: “A new bit-serial architecture for field
multiplication using polynomial bases,” 7th International Work-
shop Cryptographic Hardware Embedded Systems (2008) 300
(DOI: 10.1007/978-3-540-85053-3_19).

[19] E. A. H. Abdulrahman and A. Reyhani-Masoleh: “High-speed
hybrid-double multiplication architectures using new serial-out bit-
level Mastrovito multipliers,” IEEE Trans. Comput. 65 (2016)
1734 (DOI: 10.1109/TC.2015.2456023).

[20] F. Gebali: Algorithms and Parallel Computers (John Wiley, New
York, USA, 2011) 364.

[21] A. Ibrahim, et al.: “Processor array architectures for scalable radix
4 montgomery modular multiplication algorithm,” IEEE Trans.
Parallel Distrib. Syst. 22 (2011) 1142 (DOI: 10.1109/TPDS.2010.
196).

[22] F. Gebali and A. Ibrahim: “Efficient scalable serial multiplier over
gf(2m) based on trinomial,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 23 (2015) 2322 (DOI: 10.1109/TVLSI.2014.
2359113).

[23] A. Ibrahim and F. Gebali: “Low power semi-systolic architectures
for polynomial-basis multiplication over gf(2m) using progressive
multiplier reduction,” J. Signal Process. Syst. 82 (2016) 331 (DOI:
10.1007/s11265-015-1000-x).

[24] A. Ibrahim, et al.: “Systolic array architectures for Sunar-Koc
optimal normal basis type II multiplier,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 23 (2015) 2090 (DOI: 10.1109/TVLSI.
2014.2358196).

[25] A. Ibrahim, et al.: “High-performance, low-power architecture for
scalable radix 2 montgomery modular multiplication algorithm,”
Can. J. Electr. Comput. Eng. 34 (2009) 152 (DOI: 10.1109/CJECE.
2009.5599422).

[26] A. Ibrahim and F. Gebali: “Scalable and unified digit-serial
processor array architecture for multiplication and inversion over
g f (2m),” IEEE Trans. Circuits Syst. I, Reg. Papers 64 (2017) 2894
(DOI: 10.1109/TCSI.2017.2691353).

[27] A. Ibrahim, et al.: “New systolic array architecture for finite field
division,” IEICE Electron. Express 15 (2018) 20180255 (DOI:
10.1587/elex.15.20180255).

[28] A. Ibrahim: “Scalable digit-serial processor array architecture for
finite field division,” Microelectronics J. 85 (2019) 83 (DOI: 10.
1016/j.mejo.2019.01.011).

[29] A. Ibrahim, et al.: “Unified systolic array architecture for field
multiplication and inversion over gf(2m),” Comput. Electr. Eng. 61
(2017) 104 (DOI: 10.1016/j.compeleceng.2017.06.014).

[30] A. Ibrahim, et al.: “New systolic array architecture for finite field
inversion,” Can. J. Electr. Comput. Eng. 40 (2017) 23 (DOI: 10.
1109/CJECE.2016.2638962).

IEICE Electronics Express, Vol.16, No.23, 1–6

6

http://dx.doi.org/10.1109/TC.2006.165
http://dx.doi.org/10.1109/TC.2006.165
http://dx.doi.org/10.1109/TVLSI.2004.842923
http://dx.doi.org/10.1109/TCSII.2013.2291075
http://dx.doi.org/10.1109/TCSII.2013.2291075
http://dx.doi.org/10.1109/CIAPP.2017.8167267
http://dx.doi.org/10.1109/CIAPP.2017.8167267
http://dx.doi.org/10.1587/elex.12.20150222
http://dx.doi.org/10.1587/elex.14.20171195
http://dx.doi.org/10.1587/elex.14.20171195
http://dx.doi.org/10.1007/978-981-10-6520-0_6
http://dx.doi.org/10.1109/TC.2007.70793
http://dx.doi.org/10.1109/TC.2007.70793
http://dx.doi.org/10.1587/elex.14.20170458
http://dx.doi.org/10.1007/978-3-540-85053-3_19
http://dx.doi.org/10.1109/TC.2015.2456023
http://dx.doi.org/10.1109/TPDS.2010.196
http://dx.doi.org/10.1109/TPDS.2010.196
http://dx.doi.org/10.1109/TVLSI.2014.2359113
http://dx.doi.org/10.1109/TVLSI.2014.2359113
http://dx.doi.org/10.1007/s11265-015-1000-x
http://dx.doi.org/10.1007/s11265-015-1000-x
http://dx.doi.org/10.1109/TVLSI.2014.2358196
http://dx.doi.org/10.1109/TVLSI.2014.2358196
http://dx.doi.org/10.1109/CJECE.2009.5599422
http://dx.doi.org/10.1109/CJECE.2009.5599422
http://dx.doi.org/10.1109/TCSI.2017.2691353
http://dx.doi.org/10.1587/elex.15.20180255
http://dx.doi.org/10.1587/elex.15.20180255
http://dx.doi.org/10.1016/j.mejo.2019.01.011
http://dx.doi.org/10.1016/j.mejo.2019.01.011
http://dx.doi.org/10.1016/j.compeleceng.2017.06.014
http://dx.doi.org/10.1109/CJECE.2016.2638962
http://dx.doi.org/10.1109/CJECE.2016.2638962

