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Optimization of self-consistent approach for quantum cascade laser
using shooting method and particle swarm optimization

Yuankun Sun1,2, Peng Feng1, Haijun Zhou1, Weiling Chen3, Xin Li3, Liang Gong3a), Biao Wei1, and Chen Peng2

Abstract We present a numerical optimization approach to simulate the
output characteristics of a mid-infrared quantum cascade laser, taking into
account the effect of subband electron temperature (Tei). The shooting
method is used to simplify the calculation. The results give accurate
subband electron temperatures when the external electric field is above
the threshold. The results of the calculations are consistent with exper-
imental results, thereby confirming that consideration of the subband
electron temperature can improve our understanding of quantum cascade
lasers and help guide future experimental work.
Keywords: quantum cascade laser, shooting method, infrared, electron
temperature
Classification: Integrated optoelectronics

1. Introduction

Mid-infrared (MIR) lasers are in great demand for a variety
of applications, including molecular spectroscopy, gas de-
tection, medical diagnostics, chemical sensing, free-space
communication [1, 2, 3, 4, 5], and numerous related
applications. Quantum cascade lasers (QCLs) introduced
in 1994 [6], have become important coherent MIR sources
because of their high power, narrow linewidth, and room-
temperature operation [7]. To better understand and predict
the behaviour of QCLs, numerical investigations have
become a valuable tool. For example, numerical studies
have been useful for predicting and analysing the carrier
dynamics in quantum devices, and have contributed sig-
nificantly to improving their design [8, 9]. In addition, the
self-consistent energy balance (SCEB) model [10] has been
shown to predict the lasing characteristics of QCLs without
the computational demands of Monte Carlo [11] (MC) or
non-equilibrium Green’s function [12] (NGF) methods.
The charge transport through a quantum cascade laser is
thought to be mainly caused by incoherent electron-longi-
tudinal optical phonon (LO) and electron-electron scatter-
ing [13]. The LO-phonon scattering in two-phonon reso-

nant QCL design is dominant [14]. To improve the
accuracy of numerical simulation of QCLs, many parame-
ters must be taken into account, such as the carrier temper-
ature and optical emission. However, this proposition leads
to a complicated multi-parameter SCEB model, which
is prohibitively expensive computational. Therefore, the
algorithm of the SCEB model needs to be improved.

In SCEB models, the carrier temperature includes the
electron temperature [15] and the lattice temperature [16],
with the former expected to be significantly greater than the
latter [17]. Previous research has compared a SCEB model
that considers the average electron temperature with one
that considers the multi-subband electron temperature.
However, most of them use the common method-dichot-
omy method. If we use this method to calculate the electron
temperature of every energy level, although accurate results
can be obtained, it will be very time consuming [18, 28].
Therefore, we need a better method to calculate the elec-
tron temperature of every energy level. The first step in the
SCEB model is to solve the Schrödinger equation, for
which several approaches are possible [20, 21, 22]. The
transfer matrix approach can make solving the Schrödinger
equation become a standard eigenvalue problem. However,
some erroneous energy levels may be obtained that are not
in the given quantum well, so these must be removed
artificially. Besides, this approach is computationally ex-
pensive. An alternate method is the shooting method [22],
which is arguably the simplest technique for solving this
problem. The shooting method is simple, flexible, and
versatile, and is easy to implement on a computer. The
particle swarm optimization (PSO) algorithm starts from a
random solution and obtains the optimal solution after
several iterations. This parallel algorithm offers high pre-
cision and can optimize multiple parameters simultane-
ously, giving it a broad potential for simulating QCLs.

In this work, we propose an optimized model to
determine the temperature of electrons in the conduction
subbands and present the associated algorithm. The simu-
lation tool determines the electron temperature of each
subband for given external electric fields. The shooting
method is used to calculate the subband wave functions,
which significantly reduces the calculation time, and the
particle swarm optimization algorithm is applied to inves-
tigate the subband electron temperature of a QCL, which
significantly improves the accuracy of QCL simulations.
Meanwhile, this optimized model allows for simultaneous
optimization of multiple QCL parameters, which facilitates
the development of self-designed QCL applications.
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2. Numerical approach

The simulation is based on the well-known 1 1
2
-period

model developed by K. Donovan et al. [23, 24]. As shown
in Fig. 2, the active region is sandwiched between two
injection regions. The simulation model includes both
spontaneous emission and stimulated emission. The elec-
tron distribution of each subband can be described by a
Fermi-Dirac function. The electron temperature Tei de-
scribes the electron Fermi distribution in each subband.
In addition, the optical emission affects the electron dis-
tribution of each subband, and the electron distribution of
each subband is closely related to the electron temperature
of the given subband. We thus need to consider how optical
emission affects the QCL characteristics, which means that
we must solve the full laser rate equations in the SCEB
model to obtain QCL characteristics. The full laser rate
equations are
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Eq. (1)–(4) are for non-lasing subbands, the upper laser
subband, the lower laser subband, and the photon emission,
respectively. For convenience, we refer to Eq. (1)–(3) as
the partial-rate-equations (PREs) and to Eq. (1)–(4) as the
full-rate-equations (FREs). The stimulated emission rate
between subband i and f can be derived from the Fermi’s
golden rule (25):
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The spontaneous emission rate is given by
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The first step in SCEB model is to solve the Schrödinger
equation, which determines the energy levels in the quan-
tum well structure [27]. In previous research [18, 19], we
used the transfer matrix approach in our simulation, which
transforms the Schrödinger equation into a standard eigen-
value problem. The eigenvalues and eigenvectors of the
transfer matrix correspond to the energy levels and wave
functions of the QCL, respectively. However, the transfer
matrix approach [20, 21, 22, 23] yields all mathematical
solutions, some of which may not be physical; that is, their

energy levels place the electrons outside of the quantum
well. In this case, we have to artificially remove the
erroneous energy levels. And, this approach is computa-
tionally expensive. The energy levels in the quantum well
structure must satisfy the Schrödinger equation

�ħ2 d

dz

1
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where the effective mass m�ðE; zÞ is not constant (unlike
the case of parabolic bands) but in fact accounts for band
non-parabolicity [30, 31, 32, 33] through its energy de-
pendence

m�ðE; zÞ ¼ m�ð0; zÞ½1 þ �ðE � VÞ� ð8Þ
where the parameter α is a constant, as defined in refer-
ence (33).

The shooting method [26] converts Eq. (7) into a finite
difference equation. In this method, the first derivative is

approximated as: @z ðzn þ �zÞ �  ðzþ�zÞ� ðz��zÞ
2�z . Hence the

second derivative as: @2z ðzn þ �zÞ �  ðzþ2�zÞ�2 ðzÞþ ðz�2�zÞ
ð2�zÞ2 ,

where �z is a small displacement. The finite difference

representation of the second derivative may then be sim-

plified by substituting �z for 2�z: @2z ðzn þ �zÞ �
 ðzþ�zÞ�2 ðzÞþ ðz��zÞ

ð�zÞ2 . Using this form for the second deriv-

ative in the original Schrödinger Eq. (7), we obtain

 ðz þ �zÞ � 2 ðzÞ þ  ðz � �zÞ

¼ 2m�ðE; zÞ
ħ2

ð�zÞ2½VðzÞ � E� ðzÞ ð9Þ

which implies that, if the wave function is known at the
two points (z � �z) and z, then the value of the wave
function at (z þ �z) can be calculated for any energy E.
This method is known as the shooting method. Using two
known values of the wave function ’ðz � �zÞ and ’ðzÞ, a
third value ’ðz þ �zÞ can be predicted. In the same way,
using this new point ’ðz þ �zÞ, together with ’ðzÞ, a fourth
point ’ðz þ 2�zÞ, can be calculated, and so on. Hence the
complete wave function can be deduced for any particular
energy. The first two values of the wave function can be
deduced based on simple symmetry arguments. Numeri-
cally, these eigenenergies are found by using standard
techniques such as the Newton-Raphson iteration. The
method searches all solutions within a selected range, so
it does not get solutions outside the quantum well. In other
words, no manual filtering is required.

The second step in the SCEB model is to solve the
PREs and the FREs to study the characteristics of QCLs. In
order to take the subband electron temperature into ac-
count, the energy balance method developed by Harrison
[29, 34] is used to determine the effective subband electron
temperature Tei. In the steady state, the total kinetic energy
of electrons in a QCL remains unchanged. Conserva-
tion of energy requires Eð0Þ

f þ Ef ðkf Þ ¼ E
ð0ÞþEiðkiÞ�Ephonon

i ,
where positive (+) sign is used for phonon emission and
the negative (−) sign for phonon absorption. Applying
conservation of energy to each subband can give a different
electron temperature for each subband, as shown by fol-
lowing equation:
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The summation in Eq. (10) only includes the phonon-
electron scattering, which greatly simplifies the calculation
of the subband electron temperature Tei.

Our simulation uses 100, 150, 200 particles to
optimize the electron temperature in the SCEB model.
Each particle has seven dimensions corresponding to the
subbands. The search space (i.e., the electron temperature
range) is 30–600K, and the velocity range is 1–25K,
which determines the speed and direction of the particles.
The initial position and velocity of each particle are
assigned random in the search space. We substitute each
particle into the loop simultaneously to calculate the
electron distribution and scattering time, find the optimum
value for each dimension according to the set conditions
and record it for the next iteration. The velocity and
position of each particle is updated in each iteration by
using

�kþ1mn ¼ w � �kmn þ f1�ðpknb � xkmnÞ þ f2	ðgknb � xkmnÞ ð11Þ
and the position of each particle is updated by using

xkþ1mn ¼ xkmn þ 
kþ1mn ð12Þ
After several iterations, we obtain the optimized electron
temperature of each subband. Table I defines the relevant
variables and parameters for Eq. (1)–(12).

To obtain the electron temperature of each subband, we
propose the algorithm shown in Fig. 1. First, we form a
closed loop to solve the Schrödinger equation to obtain the
subband wave functions and the corresponding subband
edge energies, we then calculate the potential due to the
resulting charge distribution, add it to the original band-
edge potential, and then solve the Schrödinger equation
again. The process is repeated until the energy eigenvalues
converge. At this point, the wave functions are simulta-
neously solutions to both the Schrödinger equation and
Poisson’s equation. We then set the lattice temperature
TL, the electric field strength E, and some other parame-
ters. After initializing the particles of Tei, we obtain the
scattering time and electron distribution of each subband
by solving the PREs. Note that these results are not
modified.

The energy conservation is applied to each subband
to determine the optimal value of each dimension of the
particle, and other particles are moved the optimal value
of each dimension at a certain speed and direction. The
optimal electron temperature of each subband is updated in
each iteration. Finally, after several iterations, we obtain the
optimal electron temperature, the scattering time, and the
electron distribution of each subband. Since the PSO is a
parallel algorithm, as long as the particles and judgment
conditions are set properly, the optimal electron temper-
ature of each subband can be found simultaneously within
several iterations.

3. Simulation and experiment

We simulate a standard 35-stage In0.52Al0.48As/In0.53-
Ga0.47As type-I four-level Fabry-Perot QCL based on the
two-phonon resonant design with a laser cavity length of
1.358mm [35]. The effective electron sheet density is
about 20:4 � 1010, and we assume that all dopants are
ionized. We use Harrison’s method to calculate the tunnel-
ling effect from the injection level to the upper laser level
[23]. The total optical loss is assumed to be 23.3 cm−1,
including 14.3 cm−1 waveguide loss [35] and 9 cm−1 mirror
loss for waveguide refractive index of 3.4 [36].

Table I. Variables and parameters in Eq. (1)–(12).

Symbol Definition

ni Electron population in subband jii
�i,k Average electron-phonon scattering time for

transition from subband jii to subband jki
S Photon population

�p Optical waveguide confinement factor

c Speed of the light in the vacuum

n0 Waveguide core refractive factor

gc Optical gain cross section

Np Number of stages

α Total optical loss

β Fraction of spontaneous photons emitted into the
lasing mode

1=�sp Spontaneous emission rate

upper Upper laser subband

lower Lower laser subband

e Unit charge

E0 Electrical field

ω Photon angular frequency

p
*

Momentum operator

ê Polarization of the electrical field

ħ Planck’s constant divided by 2�

Eð0Þ
i Subband edge of the subband jii

ε Material permittivity

φ Wave function

E Eigenenergy

n Energy quantum number

Ephonon Phonon energy

ki Electron wave vector in subband jii
niðkiÞ Electron population at ki in subband jii
�emsðabsÞ
if ðki;TeiÞ Electron transition rate from ki state of subband jii

to subband jfi by phonon emission (absorption)

�kmn
Electron temperature variation velocity of the m
particle of n dimension

f1 Self-cognition coefficient, weight coefficient of
particle tracking their historical optimal values

f2 Society-cognition coefficient, weight coefficient of
optimal value of particle tracking group

�; 	 Random numbers

pknb Optimal solution for n dimensions

gknb Optimal solution for all particles in n dimensions

xkmn Position in dimension n of particle m in iteration k
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Fig. 2 gives, for a bias electrical field of 40 kV/cm, the
calculated electrical potential and the spatial probability
distribution of each subband in the active region and in the
two injection regions. Each region contains seven confined
subbands. Energy levels A3 and A4 are the lower and upper
laser level, respectively, and the band gap between them is
159meV, which corresponds to the QCL central wavelength
of 7.81µm, (i.e., the wavelength given in Ref. [35]).

By using the algorithms described in Fig. 1, at a lattice
temperature of 300K, we simulate the QCL for extern
electric field: 41 kV/cm, which corresponds to above the
threshold electric field. We obtain the electron temperature
of each subband. The electron temperature of each subband
affects the lifetime of the electron state, so it also affects the
optical gain of the laser.

As shown in Fig. 3, we obtain the electron temperature
of each subband separately. The inset (a) of Fig. 3 shows
the relaxation time of every subband. The relaxation time
of the A4 subband is more than twice that of the A3

subband relaxation time, indicating the population inver-
sion is formed at the upper laser level and the lower laser
level. The inset (b) of Fig. 3 shows the relationship be-
tween the optical gain and the injection current density
(including optical emission) for Te ¼ Tei and Te ≠ Tei.
When the number of iterations and the number of particles
change, we always get almost the same electron temper-
ature of each subband. With the QCL in stable operation,
the change of electron temperature is a dynamic equilib-
rium progress. When the external electric field is below the
threshold, the electron temperatures of subbands A1 and A4

are higher than those of the other subbands because elec-
trons are stimulated to subband A4 by the external electric
fields, but there is no optical radiation output. Most of the
energy transfer goes into promoting electrons from the
ground state to the high-k state through intraband transi-
tions, which increases the electron temperature.

We mainly discuss the electron temperature of A1 to
A4. From the inset (a) of Fig. 3, we can know that the
relaxation time of A1 is much larger than that of A2 and
A3, but their electron temperatures are not much different.
This is mainly because the electron temperature not only
reflects the electron distribution but also reflects the state of
the electron. The low electron temperature of A4 is mainly
due to its low-k state. However, electron-phonon scattering
can lead to electrons transferring from subband A3 to
subband A2, which decreases the electron temperature of
subband A3. Similarly, electron-phonon scattering can lead
to electrons transferring from subband A2 to subband A1,
which decreases (increases) the electron temperature of
subband A2 (A1). A small number of electrons occupy
subbands A5–A7, so the electron temperature of A5–A7

does not rise appreciably.

When the external electric field is below the threshold,
the electron temperature of each subband increases as the
external electric field increases. This trend remains un-
changed because, as the external electric field increases
and the QCL emits no radiation, the energy input increases
and is mostly converted to thermal energy, which increases

Fig. 1. The algorithm to obtain the electron temperature of each
subband (with energy balance indeed)

Fig. 3. Electron temperature of each subband above the threshold,
100(50) means the simulation contain 100 particles and 50 iterations, and
so on. The inset (a) shows the relaxation time of every subband. The inset
(b) shows that comparison of optical gain for Te ¼ Tei and Te ≠ Tei at
different injection-current densities.

Fig. 2. Calculated conduction subbands and the moduli squared of the
relevant wavefunctions for an external electric field of 40 kV/cm.
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the electron temperature. Once the external electric field
exceeds the threshold, the QCL begins to emit radiation,
and most of the electrons of the upper laser subband
transfer back to the ground state, releasing thermal energy
in the form of optical radiation. Thus, the electron temper-
ature of subband A4 decreases sharply. Because no other
effective channel exists to release energy, the electron
temperature of other subbands remains high.

Inclusion of the subband electron temperature in the
simulation leads a decrease in the optical gain of the QCL
before the laser gain is saturated. Compared with the case
in which all subbands have the same electron temperature,
the effect of assigning the appropriate specific electron
temperature to each subband leads to an increase in the
threshold current density of about 0.44 kA/cm2.

As shown in Fig. 4, we obtain the QCL simulation
(two methods) and experimental I-V curves, which have
the same trend. And when the simulation applying the
shooting method, their difference is smaller, with only
about 45mA of difference being found. Although the
QCL I-V curves of the simulation (two methods) and
experiment have the same trend, there is still a difference
between the measured and simulated optical emission
power because of the loss of optical transition and the
conversion efficiency of detection elements. We also find
that, when considering the electron temperature of each
subband and applying the shooting method, the simulation
results accurately estimate the QCL characteristics.

4. Conclusion

To conclude, we present herein an optimized model to
investigate the output characteristics of QCLs, taking into
account the effects of subband electron temperature. This
model allows us to study how subband electron temper-
ature effects laser performance. We can change the electron
distribution, and in particular the electron distribution in
the lasing subband. In addition, the shooting method is
applied to simplify the calculation. Finally, considering the
electron temperature of each subband and applying the
shooting method, the simulation results can be obtained
faster and more accurately. This model also simultaneously
optimizes multiple QCL parameters, which facilitates the
development of self-designed QCL applications.
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