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FPGA implementation of a challenge pre-processing structure
arbiter PUF designed for machine learning attack resistance

Wei Ge1a), Shenxin Hu1, Jiquan Huang1, Bo Liu1, and Min Zhu2

Abstract Utilizing the randomness caused by process variations in chip
manufacturing, PUF can provide identification and verification by gen-
erating unique challenge-response pair. The output response of Arbiter
PUF is due to path delay differences from different input challenge.
However, due to the strong linear correlation between the response and
challenge of the Arbiter PUF, the attacker can model the APUF through a
machine learning algorithm. This paper proposes a challenge pre-process-
ing structure arbiter PUF (CPP-APUF), which increases the unknowing-
ness of the input challenge, and improves the APUF’s ability to resist
machine learning attacks. The 64-stage CPP-APUF is implemented based
on FPGA, the machine learning algorithm is used to attack the CPP-
APUF. The output response prediction accuracy is lower than 61.33%,
which is effective against the modeling attack of machine learning. Finally,
the challenge-response pair obtained from experimentally verifies the PUF
characteristics.
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1. Introduction

PUF has received extensive attention in the fields of
identification and verification, password storage and ex-
change, and has become a research hotspot in the field of
information security [1, 2, 3]. The PUF relies on complex
and uncontrollable changes in the chip manufacturing
process to generate unique signatures. The PUF is consid-
ered to be a response to the input challenge, and the
challenge corresponding to the response is called a Chal-
lenge-Response Pair (CRP) [4, 5, 6, 7]. PUF can be divided
into two categories according to the number of CRPs: weak
PUF and strong PUF [8]. Weak PUF usually has only one
pair or a very small number of CRPs. On the other hand,
the strong PUF has an exponential CRP corresponding to
the PUF size, which can flexibly realize the security
purpose of using only one specific CRP once.

As one of the typical strong PUF structures, Arbiter
PUF (APUF) is the earliest proposed silicon PUF structure
[9]. The APUF propagates the rising pulse through two
identical delay paths and uses the challenge to select the
path delay variation to generate the response [10, 11].

However, due to the strong linear correlation between
the response and challenge of the Arbiter PUF, APUF’s
vulnerability in modeling attacks through machine learning
(ML) algorithms and side channel attacks is well docu-
mented in the literature [12, 13, 14, 15, 16, 17, 18].

The difficulty of machine learning attacks is increased
by disrupting the linear relationship of CPR by modifying
the structure of traditional APUF. For example, G. Edward
Suh et al. proposed the XOR APUF structure, and the final
output was obtained by the XOR of several APUF responses
[19]. B. Gassend et al. proposed the Feed Forward Arbiter
PUF (FFAPUF) protection structure, adding a pre-feedback
structure based on the APUF, and the arbitration result of
the previous stage is used as the selection signal of the
latter stage arbiter unit [20]. Qingqing Ma et al. proposed a
Multi-PUF protection structure to disturb the relationship
of challenge-response pairs by XOR masking the original
input challenge [21]. Siarhei S et al. proposed the Multiple
Input Signature Register (MISR) protection structure and
the T flip-flop XOR protection structure. The response of
the current output depends not only on the current challenge
but also on the previously input challenge [22, 23].

With the in-depth study of APUF modeling attacks,
these APUF variant structures are still vulnerable to mod-
eling attacks. In theory, neural network modeling method
can successfully attack the protective structure by learning
any nonlinear structure iteratively without analyzing the
implementation details of the protective structure [14]. The
Multi-APUF uses the value generated by the weak PUF
to perform an XOR operation with the challenge. For the
same Multi-APUF entity, the weak PUF is a single fixed
value that can be cracked by modeling attacks. MISR-
APUF uses a set of determined arithmetic units to process
the challenge. Although a pre-configured unknown param-
eter participates in the operation, the attacker can calculate
the classification of the intermediate results according to
the known arithmetic unit, and then divide the challenge
response into different groups according to the intermediate
results, and finally model different APUF models according
to different groups [12, 13, 14, 15, 16, 17, 18]. Therefore,
in order to improve the ability of APUF to resist modeling
attacks, this paper proposes a new challenge pre-processing
APUF structure (CPP-APUF), the eigenvalues of the struc-
ture contain unpredictable unknown parameters and the
challenge after processing varies with the original input
challenge. Compared with the existing APUF protection
structure, CPP-APUF can effectively resist the attack of
neural network algorithm modeling.
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The main contributions of this paper are as follows:
1. An effective challenge pre-processing structure APUF is
proposed, which increases the unknowingness and uncer-
tainty of the input challenge to improve the APUF’s
security against machine learning attacks.
2. Both the mathematical model and the design complexity
analysis of the CPP-APUF are presented. The processing
effect of the challenge pre-processing is analyzed.
3. Implement the modeling attack experiment for CPP-
APUF on the FPGA platform. The modeling attack is
carried out by four machine learning algorithms. The
modeling accuracy of Linear Regression, Logic Regres-
sion, and SVM, is finally maintained at 54.00%, and the
Back Propagation Neural Networks modeling algorithm
only reaches 61.33%. The experimental result shows that
compared with the existing APUF protection structure, the
proposed CPP-APUF protection structure can effectively
resist the modeling attack of neural network algorithm.

The rest of this article is organized as follows. In the
second part, a new challenge preprocessing structure APUF
(CPP-APUF) is proposed. In the third part, the CPP-APUF
structure is implemented on the FPGA platform and the
effects of resisting modeling attacks are discussed. Then,
the PUF characteristics of the CPP-APUF are compared
with the ideal PUF in the fourth part. Finally, we summa-
rize and discuss our work in Section V.

2. Design of CPP-APUF

2.1 Structure of challenge pre-processing APUF
The principle of the CPP-APUF structure against the
modeling attack is shown in Fig. 1. The CPP structure first
pre-processes the original challenge of the input APUF, and
then the processed challenge signal is sent to the APUF to
generate an output response.

The CPP structure consists of an improved RS flip-flop,
with the outputs of two adjacent RS flip-flops simultane-
ously acting as inputs to adjacent flip-flops. Compared to
traditional RS flip-flops with only two input signals, the
improved RS flip-flop contains four inputs, including the
original input challenges Ci and Cðiþ1Þ, and the aliasing
signal C0

ði�1Þ and C
0
ðiþ2Þ. It is particularly noted that when the

cascaded RS flip-flop is located at the edge of the structure,
such as the AND gate corresponding to C0 and Cm, the input
confusion signals C0

ð0�1Þ and C0
ðmþ1Þ use two C0 and Cm

signals are substituted. Compared with the truth table of
the traditional RS flip-flop, the improved RS flip-flop has
more input signal combination modes, including 16 input
combinations corresponding to the 4 output combinations.

2.2 Mathematical model of CPP structure
The CPP-APUF proposed in this paper includes challenge
pre-processing structure and the conventional APUF de-
sign. According to the mathematical model of APUF and
the mathematical principle of the CPP structure, the model
of CPP-APUF is described as Equation 1.

�tv ¼ ~� � ~� ð1Þ
Where �tv is the delay difference of the upper and lower
paths of the selected unit in the APUF circuit; ~� ¼

ð�1; �2; . . . ; �kÞ is the parity vector, which is defined by
the Equation 2. Ki is the output of the ith CPP design,
and Ci is the ith bit of the input challenge. Especially, the Ki

and Kðiþ1Þ will not be “0” at the same time, and their output
will have at least one “1”. ~� is a constant vector, which
is calculated by the combination of delay parameters
ð�t01 ; �t11; �t02 ; �t12; . . . ; �t0k ; �t1kÞ of each selected unit, and is
defined by Equation 3.

�k ¼
Yn
i¼k�1

ðCi � Ki � Kiþ2Þ; Ki \ Kiþ1 ¼ 1 ð2Þ

~� ¼ 1

2

�t01 � �t11
�t01 � �t11 þ �t02 � �t12

..

.

�t0k�1 � �t1k�1 þ �t0k � �t1k
�t0k � �t1k

0
BBBBBBB@

1
CCCCCCCA

ð3Þ

Comparing the mathematical models with the conventional
APUF [22], which response relies on the fixed internal
delay parameters and input challenges. The proposed CPP-
APUF design demonstrates higher complexity and unpre-
dictability than the conventional APUF since the actual
input challenge to the APUF is obfuscated and masked.

2.3 Effect analysis of CPP-APUF
For a conventional RS flip-flop, the output response signal
is an indeterminate state “X” if and only if both the input
challenge signals are “1” at the same time, and the value of
the indeterminate state depends on the manufacturing proc-
ess difference of the internal circuit of the RS flip-flop. In
such a case, the output responses C0

i and C0
ðiþ1Þ may only be

one of “0; 1” or “1; 0”. The challenge-response pair of the
improved RS flip-flop complies with the characteristics of
the weak PUF, the output response is determined by the
circuit manufacturing process difference and only when the
input challenge signals are simultaneous “1”. Taking the 4-
stage APUF as an example, for each 4-bit input challenge,
the processed output response depends on the number of

Fig. 1. Structure of challenge pre-processing APUF
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consecutive “1” in the challenge data. In a specific scenar-
io, when the input challenge is “0011”, the output response
may be “1101” or “1110”.

The challenge pre-processing structure utilizes the
weak PUF characteristics of the RS flip-flop structure to
increases the unknown parameters. At the same time,
change the linear relationship between the output response
and the input challenge. Increasing the system entropy
value through unpredictable variables can improve the
difficulty of resisting modeling attacks.

3. FPGA implementation of CPP-APUF

Based on Altera FPGA platform, the logic circuit and data
acquisition of CPP-APUF are realized [24, 25, 26, 27]. The
system block diagram of this experiment is shown in
Fig. 2. The PUF and control logic circuits are implemented
on the FPGA platform. The module Challenge Receiver is
used to receive a 64-bit random PUF challenge, and the
control module Pulse Generator generates a pulse signal.
The module UART is used for receiving challenge and
transmitting PUF response, and the PUF circuit generates a
response when the module Response Pack receives the
response and packs it into 8-bit data, it sends the data to
the PC through the module UART. The PC side sends the
random challenge through the UART and receives the PUF
response sent by the FPGA. Finally, the challenge response
data is analyzed by the MATLAB program.

Based on the FPGA platform, this paper implements
APUF with 32 cascaded challenge processing structure,
and collects 170,000 stable CRPs, of which 150000 CRPs
are used for training models, and 20,000 CRPs are used to
detect the prediction accuracy of the model. The modeling
results are shown in Fig. 3. Under the training model of
more than 3000 CRPs, the modeling accuracy rates of
the three modeling algorithms, Linear Regression, Logic
Regression and SVM, are basically no longer changed,
maintaining at around 54%, while the BPNN algorithm
modeling accuracy is still rising high. Under the training of
10,000 CRPs, the BPNN algorithm has a modeling accu-
racy rate of 52.8%. Under the training of 50,000 CRPs, the
modeling accuracy rate is 56.73%. Under the training of
100,000 CRPs, the modeling accuracy rate is as high as
59.32%, Under the training of 150,000 CRPs, the correct
rate of modeling reached 61.33%, and then gradually

stabilized, but it was significantly lower than the correct
rate of 97.4% of the original APUF modeling model in
the same case, indicating that the cascaded RS challenge
processing structure has good capability to resist modeling
attacks.

The experiment compares the resist modeling attack
effects of different APUF protection structures under BPNN
algorithm, as shown in Fig. 4. The structure of 3XOR-
APUF contains three APUF with shared challenges, and
the final output response is obtained by the “XOR” of three
APUF responses. The FF-APUF structure incorporates a
pre-feedback structure on the basis of the APUF, and the
pre-arbitration result serves as a selection signal for the
post-stage switch unit. In this experiment, three feedback
loops were adopted. The challenge of the Multi-PUF struc-
ture is “XOR” with a fixed random value based on the
challenge of the APUF. The XOR-APUF and FF-APUF
introduce finite random values through nonlinear protection
structures such as “XOR” and feedback. And the Multi-
PUF increases the difficulty of modeling attacks by “XOR”
a fixed random value with the input challenges. However,
CPP-APUF not only increased the random value of the
protection structure by using the improved RS flip-flop, but
also increased the difficulty of modeling attack with the
random value changing with the input challenges. The
original APUF structure can achieve a prediction accuracy
of 97.60% under the training of only 5,000 CRPs. After
training above 30,000 CRPs, the prediction accuracy ex-
ceeds 98.50%. The 3XOR-APUF structure contains three
APUFs. With more than 30,000 CRPs, the prediction accu-
racy of the model is as high as 95.85% to 96.41%. For the
FF-APUF structure, three feedback loops are used in this
experiment. Under the training of more than 50,000 CRPs,
the prediction accuracy rate can reach 90.78% to 93.56%.
The challenge of the Multi-PUF structure is “XOR” with a
fixed random value based on the challenge of the APUF.
Adopting the modeling attack method of [3], the prediction
accuracy can reach 95.73% under the training of 3000
CRPs. With more than 20,000 CRPs, the prediction accu-
racy can reach more than 98.10%. Under the training of
50,000 CRPs, the prediction accuracy of CPP-APUF is
56.73%. As the training number increases, the accuracyFig. 2. Experimental system block diagram

Fig. 3. Modeling attacks on CPP-APUF by different algorithms
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rate does not change drastically. Even under the training of
150,000 CRPs, the prediction accuracy is only 61.33%.

4. Characteristics of CPP-APUF

Although CPP-APUF shows good resistance to modeling
attacks, it is still necessary to consider the impact of CPP
structure on PUF characteristics. In this paper, 16 APUFs
with CPP structure are implemented on the FPGA platform
by QUARTUS II, and the uniqueness, stability, and uni-
formity of each CPP-APUF are tested [28, 29, 30].

4.1 Uniqueness of CPP-APUF
The uniqueness of PUF refers to the difference between
the responses generated by multiple PUF entities with the
same structure but independent of each other. Ideally,
the value of uniqueness tends to be 50%. Uniqueness is
an important characteristic for testing the success of PUF
design, the unique calculation and evaluation formula is
expressed by the following Equation 4. Where k indicates
that a total of k PUF entities participate in the test,
HDðRi; RjÞ represents the inter-chip Hamming distance of
the PUF entity, and n represents the bit width of the output
response of each PUF entity.

Uniqueness ¼ 2

kðk � 1Þ
Xk�1
i¼1

Xk
j¼iþ1

HDðRi; RjÞ
n

� 100% ð4Þ

The experimental response is collected, and the Hamming
distance between each two PUF is calculated. The distri-
bution map of Hamming distance is shown in Fig. 5. The
uniqueness of CPP-APUF is calculated by Equation 4 to be
51.06%, which is close to the uniqueness of 50% of the
ideal PUF requirement.

4.2 Stability of CPP-APUF
The stability of the PUF refers to the difference between the
PUF output responses when the external factors change
when the same PUF entity continuously inputs the same
challenge. Ideally, the stability of a PUF entity tends to be
100%. The stability calculation formula of the PUF entity
is as shown in Equation 5. Where m represents the number
of measurements, HDðRg; RtÞ represents the on-chip Ham-

ming distance, Rg is a reference response measured under
certain circumstances, Rt is the response obtained after
inputting the same challenge for t times, m is the number
of times the same challenge is input, n is the bit width of
the PUF entity output response.

Reliability ¼ 1 � 1

m

Xm
t¼1

HDðRg; RtÞ
n

� 100% ð5Þ

The stability of the CPP-APUF response is shown in
Fig. 6. The overall stability of the CPP-APUF output
response is lower than that of the original APUF. The
average value is 99.67%, which is 0.08% lower than the
average of the stability of the original APUF.

4.3 Uniformity of CPP-APUF
The uniformity of PUF refers to the probability that 1 and 0
appear in all responses generated by the same PUF entity.
Ideally, the uniformity of the PUF tends to be 50%. The
calculation of the uniformity is as shown in Equation 6.
Where ri;j is the value of the jth bit of the ith response, and
n is the bit width of an output response, Equation 6
calculates the proportion of “1” in the response.

Uniformity ¼ 1

n

Xn
j¼1

ri;j � 100% ð6Þ

The uniformity distribution map of 16 CPP-APUFs is
shown in Fig. 7. The average of the uniformity of the 16

Fig. 5. Hamming Distance between 16 CPP-APUF

Fig. 6. Comparison of the stability of 16 CPP-APUF and original APUF

Fig. 4. BPNN algorithm modeling attack on different APUF protection
structures
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protective APUFs is 50.18%, which is close to the uni-
formity of 50% required by the ideal PUF.

5. Summary and conclusions

In this paper, a new APUF with challenge pre-processing
protection structure is proposed to resist the modeling
attack. Based on the mathematical model, the design com-
plexity analysis is given for the CPP-APUF. The APUF
structure with challenge pre-processing is implemented on
the FPGA platform. The experimental results show that the
uniqueness and uniformity of the proposed CPP-APUF are
close to that of the ideal PUF, and the stability is slightly
lower than that of the original APUF structure. The ma-
chine learning algorithm is used for modeling attacks. The
modeling accuracy of Linear Regression, Logic Regression
and SVM is lower than 54.00%, and the BPNN modeling
algorithm output response prediction accuracy is lower
than 61.33%. None of them can accurately implement a
predictive attack. It turns out that the CPP-APUF proposed
in this paper has a better ability to resist machine learning
attack than the protection structure of the existing literature.
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