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Read disturb-aware write scheduling and data reallocation in SSDs

Bowen Huang1, Jianwei Liao1,2a), Jun Li1, Yang Chen1, Zhigang Cai1, and Yuanquan Shi2b)

Abstract Read disturb is a circuit-level noise in SSDs, which may corrupt
existing data in SSD blocks, and then results in high read error rate and
longer read latency. This paper proposes schemes of write scheduling and
data reallocation, by taking account of read disturb. We first construct a
model to estimate the block read error rate caused by read disturb, by
referring the factors of block’s P/E cycle and the accumulated read count
to the block. Then, the data being intensively read are flushed to the block
having a small read error rate. Moreover, we introduce a data reallocation
mechanism, which is completed by read reclaim, for balancing read accesses
in all blocks. Thus, the total read errors introduced by read disturb can be cut
down. Through a series of emulation tests based on several realistic disk
traces, we demonstrate that the proposed mechanism can yield attractive
performance improvements on the metrics of read latency and read error rate.
Keywords: NAND flash memory, read disturb, write scheduling, data
reallocation, read errors
Classification: Circuits and modules for storage

1. Introduction

As the feature size of NAND flash memory [1] cells
reaches the limit of the 10 nm level, further flash density
increases are then driven by TLC (3 bits/cell) combined
with vertical stacking of NAND memory planes. However,
the decrease in endurance and the increase in bit error rates
accompanying with the feature size shrinking are now
becoming the issues to be reckoned with [2, 3, 4].

Among the many noises that affect the endurance of
flash memory, retention noise [5, 6, 7, 8], program inter-
ference noise [9, 10, 11], program/erase cycling noise [12,
13], and read disturb [14] are the most important types.

Specially, read disturb is an unexpected phenomenon
in NAND flash memory, where reading data from a flash
page can impact the threshold voltages of other (unread)
pages in the same block. It has become a growing source of
flash errors, and the situation gets worse in a compact
NAND memory, such as TLC [2, 15]. This is because
the geometry of a cell shrinks, the cross-coupling voltage
noise gets even more intense that may consequently trigger
more read disturb errors.

Solid-State Drives (SSDs) are typical products of
NAND flash memory that develop into the dominant sec-

ondary storage in the coming years [16]. Then, this paper
discusses the driven factors of read disturb in SSDs, and
then builds a mathematical model for objectively assessing
the read error rate caused by read disturb, with respect to a
specific SSD block. As a result, it proposes a write schedul-
ing approach and a dynamic data reallocation mechanism
for SSDs, by taking account of the issue of read disturb. In
summary, it makes the following three contributions:
• We systematically analyze impact factors of read

disturb, including the number of block P/E cycles
and accumulated block reads. Then, we build a com-
prehensive model to estimate the read error rate of
given block by referring the aforementioned two SSD
nature factors.

• We propose a write scheduling approach to map future
hot read data to the block having a small read error
rate. To better cut down negative effects of read disturb
caused by frequently reading data on hot blocks, we
further present a data reallocation approach to balance
read accesses to involved blocks, through carrying out
read reclaim tasks.

• We offer preliminary evaluation on several disk traces
of real-world applications. As measurements indicate,
our proposal can afford a better performance improve-
ment on the metrics of average read latency, read error
rate, and the overall I/O time.
Section 2 introduces the background knowledge and

related work on read disturb. Section 3 describes the com-
prehensive model, the proposed write scheduling approach,
and read balance-based data reallocation. Section 4 shows
the evaluation methodology and reports the experimental
results. The paper is concluded in Section 5.

2. Background and related work

Read disturb is a circuit-level noise in NAND-based mem-
ory, which is induced by read operations [17, 18, 19].
Fig. 1(a) shows the voltage settings in the case of dealing
with a read operation. As seen, a reference voltage of Vr

is applied to the target word line of WL1, meanwhile a
large read pass voltage of Vpass is imposed to other word
lines.

Nevertheless, applying a high read pass voltage to
victim word lines shifts cell threshold voltages through
electron injection to floating gates of cells [17]. Though a
single read operation does not modify the neighboring cell
data immediately, the relevant cell data will be eventually
altered when the side-effect is accumulated by repetitive
read operations [18, 20]. Fig. 1(b) illustrates an example of
cell data change resulted by read disturb. In the case, the
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reference voltage of Vr1 fails to clearly identify the states of
(disturbed) ER and P1.

There have been a number of work on read disturb,
which can be generally classified as hardware-based and
software based mechanisms. Cai et al. [17] proposed learn-
ing the minimum pass-through voltage for each SSD block,
to dynamically tune the pass-through voltage on a per-
block basis for minimizing read disturb errors. Ha et al.
[18] disclosed that read disturbance is positively correlated
with Vpass and the duration of imposing Vpass. Then, they
proposed to write read-hot data using narrow threshold
voltage levels, so that such data can be read by leveraging
a low Vpass within a short interval. However, this approach
confines write performance. Wu et al. [19] have further
proposed to reserve selected threshold voltage levels as
guard levels for enlarging the tolerance margin between
different states, at a cost of reduction of storage density.

Software-based techniques have also been designed
to mitigate the negative effects of read disturb. Liu et al.
[21] introduced Read Leveling, which takes advantage of
shadow blocks. Specifically, besides purposely keeping the
hot read data, the shadow blocks should contain a number of
invalid data pages or free pages, as both kind of pages are
immune to read disturb. However, Read Leveling does not
perform well for utilizing the storage space in shadow
blocks, which limits the improvement on read latency and
read refreshing cycles. In order to ward off corrupting
existing data resulted by read disturb, Werner et al. [22]
proposed to relocate the data to other blocks if the original
host blocks have reached a read disturb limit. That is to say,
for avoiding data corruption by read disturbs, a process of
read reclaim (RR) is expected in partially read-disturbed
blocks [18]. Specifically, a process of read reclaim migrates
all valid data in the disturbed block to a free block, and then
reclaims the disturbed one [23].

3. Read disturb-aware scheduling and data
reallocation

3.1 System overview
We first identify hot read data in the current time window,
and then map their corresponding write requests (in the
next window) to the block that are not susceptible to read
disturb. After that, we re-allocate the heavily read data
accompanying with the less accessed data onto randomly
selected free blocks, when conducting read reclaim1. Thus,

the adjusted data blocks may have a (near) unified access
count and the effect of read disturb can be significantly
limited.

3.2 Modeling read error rate
The block P/E cycle does directly impact the read error
rate. On the other side, the factor of block read count
affects the read error rate, but it also depends on the block
P/E cycle. In other words, the read error rate resulted by
read operations becomes bigger, in the case of the block
P/E cycle is relative large. We thus build a non-linear
regression model to profile the impacts on the rate of read
errors regarding a given block.

Pi ¼ �0ðPEiÞ þ �1ðPEiÞ � Ri þ �i ð1Þ
where Pi, PEi, and Ri respectively denote the read error
rate, the P/E cycle and the read count regarding the ith
block.

Moreover, �0 and �1 are two real-valued functions
with argument PE, for weighting nonlinear effects of the
P/E cycles and block read counts to the read error rate.
Then, we use higher-order polynomials to estimate their
values:

�0ðPEiÞ ¼ a0 þ a1 � PEi þ a2 � PE2
i þ � � � þ ap � PEp

i ð2Þ
�1ðPEiÞ ¼ b0 þ b1 � PEi þ b2 � PE2

i þ � � � þ bq � PEq
i ð3Þ

By taking advantage of the experimental data presented
in [17], we employ the Akaike information criterion [24]
to determine the orders of �0 and �1, and the outcomes
are p ¼ 2 and q ¼ 5. Consequently, we obtain the functions
values of �1 and �2, when the erase number scales from
4K to 20K, as reported in Table I. That is to say, we can
figure out read error rates of given blocks, for classifying
them into two categories, i.e. susceptible blocks and
insusceptible blocks to read disturb.

3.3 Write scheduling
Fig. 2 illustrates the specifications on the proposed read
disturb-aware write scheduling. As seen, the proposed
scheme dispatches the received write requests, by referring
the pre-identified hot data set. We regard the data on the
addresses that will be requested multiple time (e.g. >2 in
our tests) in the time window, as the hot data set.

Then, the write requests whose logic sector numbers
are in the hot read set, will be mapped to an active block
having a small read error rate. The purpose is trying to
offset the side-effects of read disturb on the target block,
though such data will be frequently read. Otherwise, the
write data will be flushed to a block having a relatively
large read error rate.

Table I. Values of �0 and �1 with varied P/E cycles (unit: 10�3)

4K 8K 12K 16K 20K

�0 0.251 0.590 1.070 1.693 2.457

�1 0.003 0.017 0.085 0.320 0.915

Note: The input data of our model are reported in [17]. The largest block
P/E cycle in the available dataset is 16K, our model predicts the values of
�0 and �1 in the case of the block P/E cycle is 20K.

Fig. 1. (a) Voltage settings during a read operation and read disturb.
(b) Reference voltage (Vri) and read pass voltage (Vpass) of an TLC cell
[18].

1It completes hot read data re-distribution in the process of read reclaim.
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3.4 Data reallocation via read reclaim
The basic idea of data reallocation is to adaptively group
hot read data with cold read data. The motivation is not
only to unify erasure distribution of SSD blocks, but also to
balance read accesses to the blocks for optimally limiting
negative effects of read disturb (e.g. read error rate).
Furthermore, in order to decrease the overhead of data
reallocation, we carry out data migration in the process
of read reclaim [23, 25].

Fig. 3 illustrates the workflow of the proposed read
reclaim approach, for the purpose of unifying read counts
among data blocks. As seen, it first identifies the target
blocks, which contain hot read data needing to be migrated.
After that, it splits the hot read data into two parts, and
moves them onto two susceptible blocks that may have
certain cold read data. In fact, the basic combining rule of
read data is to ensure the total read count of all regrouped
blocks is (roughly) the same.

We have verified that our reallocation scheme can yield
a minimum read error count in total by evening read
accesses across valid blocks. The mathematical proof can
be found in Appendix A.

4. Experiments and evaluation

4.1 Experiment setup
The experimental platform was constructed by making use
of a widely used SSD simulator of SSDsim (ver 2.1), to
conduct trace-driven tests [26]. Note that SSDsim can only
model the performance of SSDs, it cannot store and restore
real data for each request. Table II presents our settings of

SSDsim in experiments. Since the read time depends on not
only the type of pages in the block, but also the block
feature of read disturb, we separately set the time onto
susceptible blocks and unsusceptible blocks by referring
[27, 28]. For example, the time needed for reading a LSB
page, which is located in a unsusceptible block to read
disturb is 45µs; otherwise the read time should be 75µs. In
addition, the threshold of read reclaim is set as 38000 [18].

We employed 5 commonly used disk traces, two
from the block I/O trace collection of Microsoft Research
Cambridge [29] and three from Umass Trace Repository
[30]. The detailed specifications on the traces are shown in
Table III. Specially, the metric of Hot r/r indicates the ratio
of the frequently requested addresses (i.e. the accessed time
is not less than 4) to all read address space.

Apart from the proposed scheme (labeled as Reloca-
tion), we have selected the default dynamic mapping
scheme in SSDsim as a comparison counterpart (labeled
as Baseline). Furthermore, the software-based mechanism
of Read leveling [21] has been also employed as another
counterpart in experiments. We argue that Read leveling is
the most related work to ours. Similarly, it works at Flash
Translation Layer of SSDs to distribute hot read data, and
makes use of read reclaim to relieve the negative effects of
read disturb.

In addition, the maximum number of I/O requests
processed in each time window is configured as 8192 in
the evaluation. The logical sector numbers of in-queue
requests are leveraged for mining the hot read set. Then,
the hot read set is used to mapping the write requests in the
next time window.

4.2 Tests and benefit illustration
To measure validity of the proposed mechanism that aims
to mitigate the negative effects resulted by read disturb in
SSDs, we use the following two metrics in our tests: (a)
average read latency and (b) read error rate.

4.2.1 Average read latency
As seen in Fig. 4, the proposed approach outperforms other
two comparison counterparts in all cases. Regarding the

Fig. 2. High level overview of read disturb-aware write scheduling.
W, R denote write and read requests separately, and their logical sector
numbers are represented as 1, 2…, and 5.

Fig. 3. Hot read data reallocation via read reclaim. Note that reading to
hot data brings about read disturb to all other pages in the same block.

Table II. Experimental settings of SSDsim (TLC cell)

Parameters Values Parameters Values (µs)

Capacity 64K blocks LSB read (75, 45)

Page per block 384 CSB read (110, 80)

Page size 8K MSB read (165, 135)

RR threshold 38000 LSB write 500

Overprovide 0.25 CSB write 2000

FTL scheme Page mapping MSB write 5500

Table III. Specifications on selected disk traces

Trace # of Req. Read ratio Hot r/r Read size

wdev0 1143261 20.1% 28.1% 12.6 KB

hm0 3993316 35.5% 15.4% 7.4KB

websearch1 1055448 99.9% 87.8% 15.2 KB

websearch2 4579809 99.9% 96.8% 15.0 KB

websearch3 4261709 99.9% 96.0% 15.1 KB
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traces of wdev0 and hm0, Read Leveling does not perform
well, and the proposed scheme reduces the read time by
less than 1.6%, compared with Baseline. In fact, while
dealing with wdev0 and hm0, which are two write intensive
workloads, the process of read reclaim is not triggered.
Thus, we cannot reallocate hot read data since they have
been initially flushed.

But, in the case of processing other three read intensive
workloads (i.e. websearch traces), a number of read reclaim
processes occurred. So that the proposed Relocation
scheme can cut down the read latency by 13.2% and
10.5% on average, in contrast to Baseline and Read Level-
ing. Then, we argue that data reallocation during read
reclaim can effectively balance read counts among blocks,
and then boost the read performance by limiting the impact
of read disturb.

4.2.2 Read error rate
Raw bit error rate (RBER) is a measure of the number of bit
errors that occur in a given number of bit transmissions
without ECC. We specifically record the bit error rate on
read operations (which is defined it as read error rate in this
paper), when processing the read requests of selected traces.

As shown in Figure 5, the proposed Relocation
scheme can reduce the read error rate by up to 58.4%,
compared with Baseline. Besides, we see our proposal

achieves reduction on read errors by 35.4% on average,
in contrast the related work of Read Leveling. This is
because the frequently requested data are kept by insuscep-
tible blocks, which can confine the read errors caused by
intensive read operations on the blocks at an early stage.
Once the read count to the block reaches the threshold of
read reclaim, data reallocation will balance read counts
among involved blocks, which can contribute to minimiz-
ing read errors caused by read disturb.

4.3 Overhead analysis and overall processing time
4.3.1 Read reclaim overhead

The read reclaim overhead consists the time required for
erasing original block and the time needed for moving
valid pages between original block and the target block.
Fig. 6 presents the time required for completing read
reclaim when running the selected traces.

Note that only websearch traces can triggered read
reclaim. As seen, the proposed Relocation achieves the
least read reclaim overhead, as all three schemes bring
about almost the same number of read reclaim, but our
proposal introduces the least number of page move in read
reclaim, as reported in Table IV.

Another interesting clue shown in Fig. 6 is about the
Read Leveling scheme causes the largest read reclaim
overhead. In fact, the motivation of Read Leveling is to
minimize the number of read reclaim, but it may lead to a
large number of page move. In our tests, we set the
threshold of read reclaim as 38000 by referring [18],
instead of 1000 adopted by Read Leveling [21]. We argue
that 1000 is too small to be the threshold of read reclaim,
since the maximum read count of a block can reach 40000

in a TLC SSD [18].
As a consequence, all three schemes yield almost same

number of read reclaim, which is small value, and less than
201. On the other side, Read Leveling results in the largest
number of page move in read reclaim. Consequently, it
brings about more read reclaim overhead, compared with
Baseline and Relocation.

4.3.2 Mining and mapping overhead
Fig. 7 shows the time required by mining hot read set and
mapping write requests, when using Relocation. As shown
in the figure, the mining and mapping overhead is less than
6.9 seconds for all traces. Generally, the mining and
mapping overhead is related to the number of total requests
and the number of frequently read addresses in the trace.

Fig. 4. Average read latency of selected block traces.

Fig. 5. Read error rate of selected block traces.

Fig. 6. Read reclaim time of selected block traces.

Table IV. Page move in read reclaim on selected disk traces

Trace Baseline Read Leveling Relocation

wdev0 0 0 0

hm0 0 0 0

websearch1 3032 3035 2922

websearch2 16366 34748 16000

websearch3 19068 39855 17053
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4.3.3 Overall processing time
Fig. 8 reports overall processing time, which contains the
total I/O time (the read time and the write time) and the
read reclaim time. In the Relocation approach, the overall
processing time additionally includes the hot read set
mining time and the time for mapping write requests.

As shown in the figure, Relocation yields the least
overall processing time, even though only it requires extra
time for mining hot read set and mapping relevant write
requests. This is due to our proposal can guarantee the least
read latency, and the least read reclaim overhead, which
have been respectively demonstrated in Sections 4.2.1 and
4.3.1.

4.4 Summary
With respect to comparing existing schemes and the newly
proposed mechanism, we emphasize the following two key
observations. First, the read disturb level-based data map-
ping scheme works at the early stage of application. Sec-
ond, the data reallocation scheme can balance read counts
among SSD blocks, to minimize the negative effects of read
disturb at the late stage of application. In brief, we conclude
that the proposed mechanism is able to significantly reduce
the negative effects introduced by read disturb.

5. Conclusions

We have proposed and evaluated a scheme of write sched-
uling and data reallocation in SSDs by considering the
factor of read disturb. We have built a mathematical model
for assessing the read disturb level of block. Therefore, the
frequently read data can be flushed to the blocks that are
insusceptible to read disturb. Furthermore, we have pro-
posed evenly distributing read data for yielding the mini-
mum read error rate, though carrying out read reclaim tasks.

The evaluation tests show the newly proposed scheme
outperforms other comparison counterparts, regarding the
measurements of read error rate, read response time, and
the overall processing time. In conclusion, our proposal can
effectively mitigate the negative impacts of read disturb in
modern SSDs.
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in the ith block. Ri and Wi represent the read count and the
read error count associating with the ith block. The variable
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The read error rate resulted by read operations on the
block can be measured by the following equation.

Pij ¼ � � Rij ðA:1Þ
where α is a constant, depending on SSD configurations,
such as the number of P/E cycle of the target block.
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Xm
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m � 1
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 !

¼ �
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�
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j¼1

R2
ij

 !

ðA:2Þ

The total read error count of all blocks is illustrated in
Equation A·2. As seen,

Pn
i¼1
Pm

j¼1 R
2
ij, n, m, and α in the

equation are constants in a specific case. ConsideringPn
i¼1 Ri is the total read count to all blocks, so that

W /Pn
i¼1 R

2
i can reach the minimal value when

R1 ¼ R2 ¼ � � � ¼ Rn.
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