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Multiple-model hybrid particle/FIR filter for indoor localization
using wireless sensor networks
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Abstract This letter proposes a new state estimator called the multiple-
model hybrid particle/finite-impulse-response (FIR) filter (MMHPFF) for
indoor localization using wireless sensor networks. In the proposed hybrid
filtering algorithm, the multiple-model particle filter has the role of the
main filter, and it overcomes uncertain process noise problems arising
from the use of the constant velocity (CV) motion model in indoor
localization. In addition, the multiple-model FIR filter is used as an
assisting filter to overcome particle filter failures owing to the sample
impoverishment phenomenon. Indoor localization simulations demon-
strated that the proposed MMHPFF is more accurate and reliable than
conventional algorithms.
Keywords: finite-impulse-response (FIR) filter, indoor localization,
multiple-model filtering, particle filter, wireless sensor network
Classification: Microwave and millimeter-wave devices, circuits, and
modules

1. Introduction

Indoor localization systems based on wireless sensor net-
works (WSNs) have been used widely for real-time posi-
tion monitoring of humans, robots, and equipment in
various facilities [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15]. A WSN for indoor localization is composed of
several fixed and mobile nodes. Fixed nodes are installed at
fixed positions in an indoor space, and mobile nodes are
attached to tracked target objects. Wireless communication
technologies for WSN include radio-frequency identifica-
tion (RFID) [5, 6], ultra-wide band (UWB) [7, 8, 9, 10],
and chirp spread spectrum (CSS) [11]. Localization sys-
tems can exploit various wireless measurements including
the time of arrival (TOA) [12], the time difference of arrival
(TDOA) [13], and the angle of arrival (AOA) [10]. To
obtain target positions from noisy measurements, state
estimators (also called stochastic filters) are typically used
[3, 5, 6, 9, 11, 13]. State estimators estimate state variables
(e.g., positions and velocities) using system state-space
models and noisy measurements [16].

The particle filter (PF) is one of the most widely used
state estimators and has advantages in nonlinear state
estimation problems including indoor localization using
WSNs. However, the PF has the disadvantage in that the

PF algorithm fails if the sample impoverish phenomenon
occurs under the harsh conditions of a small number of
particles or low measurement noise [17]. To overcome this
problem, the hybrid particle/finite-impulse-response (FIR)
filters (HPFFs) [14, 15] were proposed. In the HPFF
algorithm, the PF has a role of the main filter. When PF
algorithm fails under the harsh conditions mentioned
above, the assisting FIR filter operates to recover the main
filter from failures. The FIR filter [18, 19, 20, 21, 22, 23,
24, 25, 26, 27] is generally less accurate than the PF in
nonlinear state estimation problems; however, it has intrin-
sic robustness against model uncertainty and bounded-
input bounded-output (BIBO) stability. Thus, the FIR filter
is appropriate for the role of the assisting filter that operates
under harsh conditions.

In the state estimation for indoor localization, the
constant velocity (CV) motion model is typically used to
represent the motion of target objects. In the CV model, the
process noise covariance Q plays a critical role; however, it
is a very uncertain design parameter [28]. Thus, inappropri-
ately selected Q values may worsen localization accuracy
[20, 26, 27]. In cases where state-space models have
uncertainties, multiple-model approaches have been com-
monly used [16, 17, 28]. Therefore, this letter proposes
a new state estimator that exploits the multiple-model
approach to overcome the uncertain process noise problem
in the use CV motion model for indoor localization. The
proposed estimator is called the multiple-model hybrid
particle/finite-impulse-response (FIR) filter (MMHPFF),
which is obtained by extending the HPFF to the multi-
ple-model filtering. In the MMHPFF algorithm, the multi-
ple-model PF (MMPF) [29, 30, 31] is used as a main filter
and it can overcome the problem of the uncertain process
noise model. When MMPF failures occur, the assisting
MMFF operates to recover the main filter from failures.
The recovery process is performed by resetting and reboot-
ing the MMPF using the output of the MMFF. Indoor
localization simulations demonstrate that the MMHPFF
provides more accurate and reliable localization than the
single-model PF and the MMPF.

2. Multiple-model hybrid particle/FIR filter for indoor
localization

We consider two-dimensional (2D) indoor floor space to
simplify the problem. Four receivers (fixed nodes) are
installed at the corners of a rectangular-shaped space, and
a transmitter (mobile node) is attached to a human moving
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in the space. The TOAs measured at a discrete time step k
are represented as follows:

zi;k ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xiÞ2 þ ðyk � yiÞ2

q
þ vk; ð1Þ

where zi;k is the TOA obtained from the i-th receiver, c is
the speed of light, ðxk; ykÞ and ðxi; yiÞ are 2D coordinates of
the human (transmitter) and the i-th receiver, respectively,
and vk is the zero-mean white Gaussian measurement noise
with variance r.

State estimators estimate the human position using the
noisy TOA measurements and the state-space models. We
use the CV motion model, where the state vector consists
of 2D coordinates and velocities as xk ¼ ½xk yk _xk _yk�T .
The CV motion model describes the state transition as
follows:

xk ¼ Axk�1 þGwk�1; ð2Þ

A ¼
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T 0
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2
66666664

3
77777775
; ð3Þ

where wk�1 2 <2 is the zero-mean white Gaussian process
noise vector with the covariance Qk�1, and T is the
sampling interval. Q is a key parameter reflecting target
motion (course and speed); however, motion of a human
is unpredictable and Q is a highly uncertain parameter.
Therefore, the MMHPFF is proposed to overcome the
model uncertainty. The TOA measurement model is
represented as

zk ¼ hkðxkÞ þ vk; ð4Þ
where zk ¼ ½z1;k z2;k z3;k z4;k�T and hkð�Þ is the vector
representation of the nonlinear function in (1). The meas-
urement noise covariance matrix is R ¼ rI4, where I4
indicates the 4 � 4 identity matrix.

The MMHPFF uses the MMPF as a main filter. The
MMPF adopts the regime (model) variable rk as a new
state variable, and rk is in effect during the time interval
ðtk�1; tk�. Thus, the augmented state vector is defined as
yk ¼ ½xTk rk�T , where rk 2 S ¼ f1; 2; � � � ; sg and s indicates
the number of models. The multiple CV motion models are
constructed by selecting several Q values, and Qk at time k
becomes a function of rk as Q

ðrkÞ
k .

The first step of the MMPF algorithm is to generate the
random set frpk gNp¼1, where N is the number of particles
(samples), based on frpk�1gNp¼1 and the transition probabil-
ity matrix (TPM) denoted by Π [17]. The next step is the
regime conditioned sampling process, where the state tran-
sition is performed using the multiple CV motion models
determined by the regime variable as

xpk ¼ Axpk�1 þGwp
k�1; ð5Þ

wp
k�1 � Nð0;Qðrp

k
Þ

k�1Þ; ð6Þ
where Nð0;Qðrp

k
Þ

k�1Þ indicates the Gaussian density with the
mean 0 and the covariance Q

ðrp
k
Þ

k�1Þ. The last step is the

resampling process, which is almost the same as that of
the generic (single model) PF. The only difference is to find
a dominant regime at each time step. rk with the greatest
portion is selected as the dominant regime r�k . The MMPF
produces the output, ŷk ¼ ½x̂Tk r�k �T , where x̂k is obtained by
computing sample mean of the particles.

The MMHPFF uses the MMFF as an assisting filter
that operates only when a MMPF failure is detected. The
MMFF uses only recent finite measurements on the time
interval ½m; n�, where m and n are defined as m ¼
k �M þ 1 and n ¼ k � 1, respectively, and M is the mem-
ory size. The MMFF produces the estimated state x̂�k and
the estimation error covariance P�

k , which are computed as
follows:

x̂�k ¼ LZM; ð7Þ
P�
k ¼ KMQMK

T
M þ LRML

T ; ð8Þ
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Hg;h ¼ HgA
h�g�2 ðg > hÞ; ð16Þ

RM ¼ ½diagðR R � � � R
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{M

Þ�; ð17Þ

QM ¼ ½diagðQðr�mÞ
m Q

ðr�mþ1Þ
mþ1 � � � Qðr�n Þ

n

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{M

Þ�; ð18Þ
ZM ¼ ½zTm zTmþ1 � � � zTn �T ; ð19Þ
KM ¼ ½AM�1G AM�2G � � � AG G�: ð20Þ

Note that the outputs of the MMPF were used for MMFF in
(14) and (18).

The key idea of the hybrid particle/FIR filtering is to
detect PF failures and to reset the PF using the output of the
FIR filter. Failure detection is performed based on the
Mahalanobis distance [32] between the predicted measure-
ment ẑk and the actual measurement zk, which is computed as

Dk ¼ ðzk � ẑkÞR�1ðzk � ẑkÞ; ẑk ¼ hkðx̂kÞ: ð21Þ
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If Dk is greater than a predetermined threshold �2, we judge
that main filter failure occurs. The threshold �2 is taken
from the chi-square table [33]. For example, the 4th degree
system having four measurements requires �2 ¼ 13:28
for the confidence level of 99%. When the MMPF failure
is detected, the assisting MMFF operates and produces
x̂�k and P�

k . Next, the random samples are generated
as x̂k;p � Nðx̂�k ;P�

kÞ, (p ¼ 1; 2; � � � ; N ). Additionally, a ran-
dom set of regime values frpk gNp¼1 is generated following
the discrete uniform distribution. Lastly, the main MMPF
is reset using the new sample set fx̂Tk;p rpk gNp¼1.

3. Simulation

We demonstrated the proposed MMHPFF using indoor
localization simulations. Four receivers were installed at
the corners and a human with a transmitter traveled along a
square-shaped trajectory as shown in Fig. 1. At each time
step k, 2D positions of the human were estimated using the
state estimators, such as the MMHPFF, MMPF, and PF.
For the multiple CV motion models, we choose three Q
values as Qð1Þ ¼ 0:12I2, Q

ð2Þ ¼ I2, and Qð3Þ ¼ 102I2. The
MMHPFF and the MMPF used the multiple CV motion
models, where the TPM was set as

� ¼
0:9 0:09 0:01

0:1 0:8 0:1

0:01 0:09 0:9

2
64

3
75: ð22Þ

The PF used three (single) CV models and each of them
matched to the three Q values mentioned above. The
memory size of the assisting MMFF in the MMHPFF
was set as M ¼ 4. The simulation time was 40s and the
sampling interval was set as T ¼ 0:1s. Thus, a simulation
performed during 1 � k � 400. The localization perform-
ance was evaluated using the total localization error (TLE)
computed as

TLE ¼ 1

400

X400
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � x̂kÞ2 þ ðyk � ŷkÞ2

q
; ð23Þ

where ðxk; ykÞ and ðx̂k; ŷkÞ are the true and estimated 2D
coordinates (unit: meter) of the human. We ran 100 MC
simulations and computed the averaged TLE (ATLE) for

the effective MC simulations. We judged that an MC
simulation that TLE exceeds 5m is a localization failure
and discarded it when computing the ATLE.

Simulations were performed under three different con-
ditions. The first simulation was performed under normal
conditions, where we set the measurement noise covariance
and the number of particles as R ¼ 0:52I4 and N ¼ 100,
respectively. The second and the third simulations were
performed under harsh conditions, such as small number of
particles (N ¼ 20 and R ¼ 0:52I4) and low measurement
noise (N ¼ 100 and R ¼ 0:12I4). Accuracy and reliability
of the algorithms were evaluated using ATLE and the
number of localization failures NF , respectively. Simulation
results are shown in Table I, where “-” indicates that ATLE
cannot be computed because Nfail ¼ 100. In Table I, the
MMHPFF shows a lower ATLE and Nfail than the other
algorithms. In the simulation, Qð3Þ was the best choice for
the single-model PF; however, the choice is difficult. Note
that the MMHPFF provides better performance that single-
model PFs without choice of Q.

4. Conclusion

This letter proposed a new state estimator called the
MMHPFF for indoor localization using WSNs. The
MMHPFF overcomes uncertainty of the process noise
covariance of the CV motion model. In addition, the
MMHPFF is robust against PF failures owing to the
recovery process using the assisting MMFF. Simulation
results demonstrated that the MMHPFF is more accurate
and reliable than both the PF and MMPF. Therefore the
MMHPFF is suitable for indoor localization in various
industrial applications.
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