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Direct synthesis of slot arrays for 5G communication applications

Chunmei Liu1, Wen Cao1, Xin Cao1, a), and Weiping Li2

Abstract In this paper, a slot array in 5G communication band is pro-
posed. The pattern function is first modified and calculated. Then, the
array is constructed using rectangular waveguides. Based on our simulated
and measured results, the proposed method has successfully achieved the
slot arrays with low side lobes and high gain. The proposed antenna arrays
can be applied in modern 5G communication systems.
Keywords: antenna arrays, slot antenna, rectangular waveguide, 5G com-
munication
Classification: Microwave and millimeter-wave devices, circuits, and
modules

1. Introduction

Slot antennas have a wide range of applications and the
aperture distribution of a waveguide slot array antenna can
be independently controlled [1, 2, 3, 4, 5, 6]. By control-
ling the amplitude distribution and phase distribution of its
aperture surface, it is relatively easy to achieve low or ex-
tremely low side lobes [7, 8, 9, 10, 11]. Beam forming
techniques are attractive in modern 5G microwave commu-
nications and radar system designs [12, 13, 14, 15, 16].
Waveguide slot antenna arrays are highly valued for their
compact structure, good mechanical strength, high radiation
efficiency, low feed loss, large power capacity, and high reli-
ability [17, 18, 19, 20, 21, 22, 23]. Waveguide slot antenna
has many advantages. The waveguide slot antenna is rela-
tively easy to control the aperture distribution, and there is no
energy loss caused by the irradiation of the feed source, nor
does it affect the observation range because of the aperture
shielding, and it does not have the defect of a high level of far
side lobes [24, 25, 26, 27, 28]. 5G communications systems
in the millimeter regions are given in Table I, where it is
divided into five sub-bands named from n257–n261 [29]. In
this paper, a method for designing the aperture distribution
of a waveguide slot array antenna is proposed, and a com-
prehensive design of the array antenna is completed. The
synthesis principle of synthesis method is introduced, and
the advantages and disadvantages of Taylor or Chebyshev
are compared; circle caliber synthesis method, circular cal-
iber continuous excitation distribution, and circular caliber
rectangular grid excitation are analyzed. According to the
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Table I 5G operating bands in millimeter wave regions

antenna design specifications, a circular array distribution is
used to synthesize the radiation pattern to obtain the original
aperture rectangular grid excitation level distribution of the
waveguide slot array antenna, and then the waveguide slot
array is used to approximate the aperture excitation level
distribution.

The aim of the proposed method is to take quantization
effect into account. The circular is discretized by the slot
units, and with the proposed method, we can determine
whether to take or leave the slots on the edge in order to
achieve the highest gain with the lowest sidelobes. The
problem with Chebyshev method is that the sidelobes at the
±90◦ of the mainlobe are relatively high. The problem with
Taylor method is that the sidelobes near the mainlobe are
relatively high. Therefore, in both methods, the sidelobes
may not be effectively suppressed and therefore the gain of
the antenna array can be compromised.

The designed frequency of the antenna array is at 28 GHz,
which can be applied in the n257 and n261 sub-bands of the
5G communication systems.

2. Theory and design process

2.1 Synthesis process
The antenna elements can be any type of radiating antenna,
but the type of the radiating elements in the same array an-
tenna must be the same, and the form of array elements in
space is also the same. According to the arrangement of
array elements in space, a variety of array antennas such as
one-dimensional linear array, two-dimensional planar array,
and three-dimensional spatial array can be formed. The ra-
diation characteristics of an array antenna mainly depend on
the type, number, and arrangement of the array elements,
the cell spacing, and the amplitude and phase distribution
of the excitation current on each cell. The design of the ar-
ray antenna first requires proper array synthesis, that is, the
radiation pattern is synthesized under the condition that the
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Fig. 1 The graph of lobe broadening factors ζ and M

required radiation characteristics are met, and the array pat-
tern shape, main lobe width, sidelobe level, and directivity
are obtained. Coefficient, from which the number of cells
in the array, cell spacing, excitation amplitude, and phase
distribution are obtained.

For line array, the pattern function can be expressed as
[30]

P(u) = cosh(πB) sin(πv)
πv

(1)

Since the side lobe level of the basic function sin(πv)/(πv)
is relatively high, a new line source pattern function is built
based on the principle that moving the zero position to the
far sidelobe direction can reduce the side lobe level.

P(u) = cosh(πB) sin(πv)
πv

M−1∏
m=1

[
1 − (v/vm)2

]
M−1∏
m=1

[
1 − (v/m)2

] (2)

The significance of this pattern function is to replace the
previous zero point of the basic function with the zero point
of the rewritten ideal space factor, and the zero point after
the first zero point is still the zero point of the original basic
function. Then the zero position becomes

vn =

{
±ς

√
B2 + (m − 1/2)2, 1 ≤ m ≤ M − 1

±m, M ≤ m ≤ ∞ (3)

Function (3) is continuous in the defining range, then we
have

ς =
M√

A2 + (M − 1/2)2
(4)

The relation between ζ and M has been plotted in Figure 1
with different values of B.

Since
sin(πv)
πv

=

∞∏
m=1

[
1 −

( v
m

)2
]

(5)

then we have

P(v) = cosh(πB)
∞∏

m=M

[
1 − (v/m)2

]
·
M−1∏
m=1

[
1 − (v/vm)2

]
(6)

Circular aperture pattern with respect to θ can be given as

P(θ) = 2πa2 J1(ka sin θ)
ka sin θ

(7)

Fig. 2 The normalized pattern function

where a is the radius of the aperture, J1 is the Bessel function.
The normalized pattern function is

P(v) = 2
J1(πv)
πv

(8)

where
v =

2a
λ

sin θ (9)

The normalized pattern function has been plotted in Figure 2.
Since the space factor P(θ) is axisymmetric, the stereo

pattern can be obtained by rotating the graph in Figure 2
around the z-axis. The main lobe beam is conical, and the
side lobe level is high. The far side lobe decreases expo-
nentially. The zero position of the pattern is α1m, which
satisfies J1(πα1m) = 0, m = 0,1,2, . . . ,m. It is true ex-
cept for m = 0, because α10 = 0 is the position where the
maximum spatial factor is located. If the side lobe is to
be reduced and the level of the side lobe is adjustable, a
new circular aperture space factor must be constructed. Us-
ing the uniformly distributed circular aperture normalized
space factor P(v) = 2J1(πv)/(πv) as the basic function of
the space factor, we can remove the first zero point α1m next
to the main lobe, and use them as new zero point. These
new zero points should meet two conditions: first, there is
a certain outward movement relative to the corresponding
original zero position; second, the new zero position can be
adjusted, so that the side lobe level can be adjusted. The
new zero that satisfies these two conditions should be the
zero of the modified ideal line source space factor. It can be
deduced from this space factor is

P(u) = cosh(πB) J1(πv)
πv

M−1∏
m=1

[
1 −

(
v

vm

)2
]

M−1∏
m=1

[
1 −

(
v

α1m

)2
] (10)

For rectangular grids with rectangular borders, the prod-
uct of the patterns of two orthogonal linear arrays is equal
to the pattern of a planar array. The principle and method
of the array can be directly applied. The disadvantage of
the separable distribution is that the gain is limited, but the
central axis symmetrical pattern can overcome this disad-
vantage. Therefore, we extend line source analysis theory
to a circular boundary plane array with a central axis sym-
metrical distribution. In this way, we only need to sample
the circular distribution to obtain the excitation coefficient
of the rectangular grid discrete array.
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Fig. 3 Rectangular grid circular array

Let us suppose there is an M × N rectangular grid array
placed in the xy plane, as shown in Figure 3. The row and
column spacing are lx and ly , respectively. The corners are
cut to form a circle plane array distribution. The coordinate
of the unit (xm, yn) can be given as{

xm = (m − 1/2)lx, m = 1,2, · · · ,M/2
yn = (n − 1/2)ly, n = 1,2, · · · ,N/2 (11)

So we can get the pattern function as

P(θ, φ)

= 4
M/2∑
m=1

N/2∑
n=1

Imn (χmn) cos
[
(2m − 1)vx

2

]
cos

[ (2n − 1)vy
2

]
(12)

where {
vx = klx sin θ cos φ
vy = kly sin θ cos φ (13)

χmn =

{[
(2m − 1)

2
lx

]2
+

[
(2n − 1)

2
ly

]2
}1/2

(14)

Considering that the discontinuity in the waveguide ex-
cites electromagnetic waves of higher order modes, the stan-
dard waveguide WR28 is selected as the radiation wave-
guide to design the radiation surface of the array antenna
to suppress higher modes. Assume that the common wall
between the radiating waveguides is 1 mm, so the waveguide
wavelength at the center frequency of the electromagnetic
waves transmitted in the radiating waveguide can be ob-
tained. Assuming that the longitudinal direction of the radi-
ating waveguide is the x-axis, the array can be determined in
the x-direction according to the principle of electromagnetic
field transmission in the waveguide. The radiation pattern
can be synthesized according to the index parameters by us-
ing the previously described round aperture rectangular grid
array synthesis method.

When the array radius is selected as a = 50 mm and the
number of equal side lobe levels n = 4, the main side lobe
level ratio R0 = 30 dB. The synthesized pattern using the
proposed method in comparison with Chebyshev and Taylor
methods is shown Figure 4. We can see that the pattern using
Chebyshev method has high sidelobs at the ±90◦ direction,
while the pattern using Taylor method has high sidelobs near
the mainlobe. By comparison, the proposed method has
achieved the optimal results in the whole range. Since more

Fig. 4 The synthesized radiation pattern in the (a) E-plane and (b) H-
plane in comparison with conventional methods

electromagnetic power is diverted to sidelobes in Chebyshev
or Taylor method, the gain is lowered compared with the
proposed method.

2.2 Waveguide and slot analysis
Based on the circular aperture synthesis method, starting
from the continuous surface source current on the circular
aperture, the corresponding continuous surface source exci-
tation distribution can obtained. Then the sampling theorem
is used to synthesize the required pattern, and the excita-
tion amplitude of the discrete circular aperture array unit is
obtained by sampling. The distribution of the normalized
equivalent excitation current of the radiating element on the
radiating surface is shown in Figure 5. We can see that the
closer to the center of the array is, the higher the equiv-
alent normalized excitation current is. It can be observed
that the excitation current distribution on a single waveguide
changes relatively smoothly, and the excitation amplitude at
the end and the excitation amplitude of the adjacent unit be-
comes much smaller. As the longitudinal waveguide of the
x-axis moves away from the x-axis, the number of radiating
elements on the radiating waveguide gradually decreases,
which is precisely to meet the circular distribution of the
array antenna.

From this, we can start from the excitation amplitude dis-
tribution of the discrete circular aperture array unit of the
radiation front, and obtain the normalized admittance dis-
tribution of the radiation front gap, as shown in Figure 6.
It can be seen from the figure that the sum of the equiva-
lent conductance values of the slots on each waveguide is
unit, and this is because the equivalent conductance values
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Fig. 5 The equivalent normalized excitation current of the radiation array

Fig. 6 The normalized admittance of the radiation gap of 1/4 radiation
array

Fig. 7 The equivalent impedance of coupling gap on 1/2 radiation front

of only half of the slots of the waveguide are drawn on the
figure, and the other side of the slots is equivalent. The ef-
fective conductance value is symmetrically distributed with
this side.

The equivalent impedance value of the central coupling
slot feeding the radiating waveguide is generally different at
different positions. This is because the feeding of the center
coupling slot to the radiating waveguide is determined by
comprehensively considering the ratio of the energy radiated
on the corresponding radiating waveguide to the total radiant
energy of the array. At the same time, the form of center
feeding for the coupling waveguide is considered. Figure 7
shows the equivalent resistance of the center coupling slot
on the 1/2 array of the array antenna after calculation.

2.3 Simulation and measurement
The excitation amplitude distribution of the circular aperture
array unit and the equivalent conductance value distribution

Fig. 8 The structure of the antenna array (a) top view (b) side view

of the longitudinal waveguide slot of the radiating element
and the equivalent resistance value distribution of the cen-
ter coupling slot have been obtained before. The standard
WR28 waveguide (7.11 mm × 3.56 mm) has been chosen
as the radiating waveguide, and the common wall thickness
between the waveguides is 1 mm. The coupling waveguide
size is 6.7 mm × 3.4 mm. All radiating waveguides are fed
in-phase.

The excitation amplitude distribution of the circular aper-
ture array unit and the corresponding longitudinal waveguide
of the radiating unit have been extracted. The gap’s equiva-
lent conductance value distribution value corresponds to the
extracted equivalent admittance parameters, and determines
the size and offset of each radiating gap unit. A radiation
front model was established. The impedance value distri-
bution corresponds to the extracted equivalent impedance
parameters, and the size and rotation angle of each coupling
gap unit are determined. Based on the model of the radiation
front, a model of the coupling waveguide and the coupling
gap is also established. For the establishment of the exci-
tation slot and the waveguide, the factors of the standing
wave bandwidth and phase bandwidth of each coupling slot
unit in the coupled waveguide must be considered compre-
hensively. The selection of the waveguide slot to feed the
coupled waveguide is the result of comprehensive consid-
eration. The excitation slot is a wide-border lateral slot of
the waveguide with respect to the coupled waveguide, while
the excitation slot is a wide-border longitudinal slot of the
waveguide relative to the excited waveguide. Because the
interface of the antenna is the standard WR28 waveguide
interface, adding a waveguide at the end will transition the
size of the excitation waveguide to the WR28 waveguide, as
shown in figure 8.

Figure 9 shows the radiation patterns of the E and H
planes at the center frequency at 28 GHz. From the radiation
pattern of the known plane, the side lobe level of the H plane
radiation pattern is 23 dB, with the 3 dB lobe width of 7◦.
The side lobe level of the E plane radiation pattern is 22 dB,
with the 3 dB lobe width of 7◦. Then, the antenna gain is
over 22 dB.

The simulated voltage standing wave ratio (VSWR) is
given in Figure 10. The VSWR is 1.05 at the operating
frequency of 28 GHz, which means the input signal has been
absorbed by the antenna with almost no reflection.
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Fig. 9 The simulated E- and H-plane radiation patterns

Fig. 10 The simulated VSWR of the slot-array

The antenna is fabricated after simulation. Because this
antenna has an internal cavity structure, flat-plate high-speed
milling is used. The radiation waveguide is too thin for the
isolation of the radiation waveguides only by screw con-
nection. Therefore, the radiation waveguide grooves are
seamlessly welded, and the remaining parts are mechani-
cally tightly connected by screws. The actual photo after the
antenna is processed is shown in the figure below.

Figure 11 shows the radiation patterns of the E-plane and
H-plane at 28 GHz. The figure shows that the side-lobe
level of the H-plane of the radiation pattern is 27 dB with
the 3 dB lobe width of 7◦; The side lobe level of the E-plane
of the pattern is 18 dB, and the 3 dB lobe width is 6◦. The
gain of the antenna is over 18 dB. It can been seen that the
simulated and measured results are in good agreement. The
difference between the actual test results and the simulation
results is mainly due to the difference between the actual
size of the array antenna and the theoretical value due to the
introduction of processing errors.

Fig. 11 The measured E- and H-plane radiation patterns

3. Conclusion

In this paper, a slot array is synthesized for 5G communi-
cation systems. The proposed method is theoretically ana-
lyzed, simulated, fabricated and measured. The measured
results are in good agreement with the simulated results.
The proposed antenna can be applied in n257 and n261 sub-
bands in the 5G millimeter wave communication systems.
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