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Modeling of electromagnetic
waves propagation in
nonlinear optical media
using HSCN-TLM method
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Abstract: In this paper, we propose a hybrid symmetrical con-
densed node TLM approach for the simulation of optical media under
femtosecond regime. The formulation is based on the piecewise linear
recursive convolution (PLRC) technique, voltage sources and the intro-
duction of the variable admittance concept. Optical solitons with Kerr
and Raman nonlinearities are simulated using this novel approach.
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1 Introduction

Nonlinear optics field has experienced huge developments in recent years ow-
ing mainly to the great demand for faster and high performance communica-
tion systems. Along with this, there has been an increased need for accurate
models allowing the electromagnetic (EM) field behavior in optical devices
to be predicted for design purpose.

The recent developments of the transmission line matrix (TLM) method
have shown its flexibility and efficiency for the simulation of EM waves propa-
gation in complex media. This technique has been able to simulate EM wave
propagation in dispersive anisotropic, dispersive bi-anisotropic and nonlin-
ear media [1, 2, 4, 5, 6]. In this paper, a time domain approach for the
simulation of nonlinear dispersive optical media using the TLM method is
developed directly from Maxwell’s equations and which does not make use
of the Z-transform techniques [2, 3]. It consists in adding voltage sources
modeling linear and nonlinear dispersive effects of the media in the hybrid
symmetrical condensed node (HSCN), the use of the piecewise linear recur-
sive convolution (PLRC) technique [7, 8] and the introduction of the variable
admittance concept. The presented numerical results illustrate the propa-
gation of EM waves in nonlinear Kerr and Raman media together with the
linear Lorentzian dispersion.

2 Formulation

The PLRC-TLM formulation considering the hybrid symmetrical condensed
node (HSCN) has been developed from the expression of the electric flux
density D(t) given in [7]:

D(t) = ε0
[
ε∞E(t) + PL(t) + E(t)

(
PNL(t) + α

(3)
0 (E(t))2

)]
(1)

where ε0 is the free space permittivity, ε∞ is the infinite frequency relative
permittivity, α(3)

0 is a real constant defining Kerr’s susceptibility, E(t) is the
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electric field such that the electric voltage V(t) = E(t)∆l where ∆l is the
space step, PL and PNL are respectively the linear and the nonlinear polar-
isations. PL is expressed by the linear integral convolution of E(t) with the
first order linear complex susceptibility χ̂(1)

L (t) which contributes to the linear
properties of the medium’s frequency dependent permittivity, while PNL is
given by nonlinear convolution integral of E(t)2 with the third order nonlin-
ear complex susceptibility χ̂(3)

NL(t) that models transient Raman scattering [7,
9], such that:

PL(t) =
1
∆l

t∫
0

V(τ)χ(1)
L (t − τ)dτ (2)

PNL(t) =
1

∆l2

t∫
0

(V(τ))χ(3)
NL(t − τ)dτ (3)

where

χ
(1)
L (t) = Re al(χ̂(1)

L (t)) (4)

χ
(3)
NL(t) = Re al(χ̂(3)

NL(t)) (5)

The complex susceptibilities χ̂(1)(t) and χ̂(3)(t) can be expressed in ex-
ponential form as follow:

χ̂
(1)
L (t) = αLe−γLt (6)

χ̂
(3)
L (t) = αNLe−γNLt (7)

where αL, αNL, γL and γNL are complex magnitudes linked to the nonlinear
properties of the medium. The use of the piecewise interpolation [7, 8] for
V(t) and (V(t))2 allows the time discretization of the convolutions appearing
in Equations (2) and (3). We obtain at a time t = n∆t the following discrete
expressions:

PL =
1

∆L

n−1∑
m=0

[
Vn−mχm

L −
(
Vn−m − Vn−m−1

)
ξmL

]
, (8)

PNL =
1

∆L2

n−1∑
m=0

[
Vn−m2

χm
NL − 2Vn−m

(
Vn−m − Vn−m−1

)
ξmNL

+
(
Vn−m−1 − Vn−m

)2
ζm
NL

]
(9)

where Vn−m is the electric voltage at time (n − m)∆t,

χm
L = Re al

⎛
⎜⎝

(m+1)∆t∫
m∆t

χ̂
(1)
L (τ)dτ

⎞
⎟⎠ , (10)

ξmL = Re al

⎛
⎜⎝ 1

∆t

(m+1)∆t∫
m∆t

(τ − m∆t) χ̂(1)
L (τ)dτ

⎞
⎟⎠ , (11)

χm
NL = Re al

⎛
⎜⎝

(m+1)∆t∫
m∆t

χ̂
(3)
NL(τ)dτ

⎞
⎟⎠ , (12)
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ξmNL = Re al

⎛
⎜⎝ 1

∆t

(m+1)∆t∫
m∆t

(τ − m∆t) χ̂(3)
NL(τ)dτ

⎞
⎟⎠ , (13)

ζm
NL = Re al

⎛
⎜⎝(

1
∆t

)2
(m+1)∆t∫
m∆t

(τ − m∆t)2 χ̂(3)
NL(τ)dτ

⎞
⎟⎠ . (14)

Using Equations (8) and (9) in Equation (1) gives the discrete time ex-
pression of the electric flux density at time n∆t:

Dn =

ε0
∆l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε∞Vn +
n−1∑
m=0

(
Vn−mχm

L − (
Vn−m − Vn−m−1

)
ξmL

)
+

Vn

∆L2

n−1∑
m=0

⎡
⎣ Vn−m2

χm
NL − 2Vn−m

(
Vn−m − Vn−m−1

)
ξmNL+((

Vn−m−1 − Vn−m
)2
ζm
NL

)
⎤
⎦ +

+
α

(3)
0 Vn3

∆L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

The expression of the electric flux density Dn+1 at a time (n+1)∆t is obtained
following the same procedure. The knowledge of Dn and Dn+1 represents a
necessary and an indispensable step in the formulation and in the elaboration
of the TLM algorithm allowing the simulation of the nonlinear optical media.
The next step is based on Ampere’s law in its discrete time form. Let’s
consider then an EM wave propagating in the z-direction, (i.e., Ex and Hy

components) for which Ampere’s law gives:

(∇× H)n+1/2
x =

Dn+1
x − Dn

x

∆t
. (16)

Developing Equation (16) by the use of the electric flux density expressions
for Dn and Dn+1, gives the following expressions for the electric voltage Vn+1

x

at a time (n + 1)∆t:

A1Vn+1
x + A2Vn+12

x + A3Vn+13

x = A0Vn
x +

[
∆ψn

L +
∆t
ε0Z0

(∇× H)n+1/2
x

]
(17)

where

A1 = ε∞ + χ0
L − ξ0L + Vn2

x ζ
0
NL/∆L2 + ψn+1

NL (18)

A2 = 2Vn
x

(
ξ0NL − ζ0

NL

)
/∆L2 (19)

A3 =
(
χ0

NL − 2ξ0NL + ζ0
NL + α

(3)
0

)
/∆L2 (20)

A0 = ε∞ − ξ0L + ψn
NL + α

(3)
0 Vn2

x /∆L2 (21)

∆ψn
L =

n−1∑
m=0

[
Vn−m

x

(
χm

L −χm+1
L

)
−

(
Vn−m

x −Vn−m−1
x

)(
ξmL − ξm+1

L

)]
(22)

ψn
NL =

1
∆L2

n−1∑
m=0

[
Vn−m2

x χm
NL − 2Vn−m

x

(
Vn−m

x − Vn−m−1
x

)
ξmNL+(

Vn−m−1
x − Vn−m

x

)2
ζm
NL

]
(23)

ψn+1
NL = ψn

NLe−γNL∆t (24)
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Since the linear and nonlinear complex susceptibilities can be written in expo-
nential form [7], the sums appearing in Equations (22) and (23) are computed
recursively:

∆ψn
L =

[
Vn

x

(
χ0

L − ξ0L

)
+ Vn−1

x ξ0L

] (
1 − e−γL∆t

)
+ e−γL∆t∆ψn−1

L (25)

ψn
NL =

1
∆L2

[
Vn2

x χ
0
NL − 2Vn

x

(
Vn

x − Vn−1
x

)
ξ0NL +

(
Vn−1

x − Vn
x

)2
ζ0
NL

]
+ e−γNL∆tψn−1

NL (26)

Writing the magnetic field components of Equation (17) in terms of incident
and reflected pulses [10, 11], then applying the charge conservation principle
for the HSCN with a capacitive stub of normalized admittanceYox(t) we
obtain the following equation:

Vn+1
x +

A2

A1

(
Vn+1

x

)2
+

A3

A1

(
Vn+1

x

)3

=
1

2A1
n+1

(
Vi

1 + Vi
2 + Vi

9 + Vi
12 + YoxVi

13 + 0.5Vsx

)
(27)

n+1Vsx is the voltage source introduced in port 16 of HSCN [5] in order to
take into account in the TLM mesh linear and nonlinear dispersive properties
and also Kerr effects and Raman interactions taking place in the nonlinear
medium:

n+1Vsx = −nVsx + 4
[
∆ψn

L + (A0 − A1) Vn
x + A2Vn2

x + A3Vn3

x

]
(28)

n+1Yox is the normalized admittance at a time (n + 1)∆t which is a function
of the linear properties and which depends on the nonlinear properties and
on the nature of the EM wave propagating in the nonlinear medium:

n+1Yox = 4(ε∞ + χ0
L − ξ0L + (Vn2

x ζ
0
NL)/∆L2 + ψn+1

NL − 1) (29)

To implement the PLRC-TLM algorithm with the HSCN and voltage sources,
we compute at each iteration time the normalized admittance Yox(t) given by
Equation (29) and the voltage sources expressed by Equation (28). Then, we
put the obtained values in the main Equation (27). This nonlinear equation
is finally resolved using an iterative method. The solution of this equation
is then invested in the computation of reflected pulses and in the connection
process among the different TLM mesh nodes. All these operations require
to memorize the two previous values for Vx.

3 Numerical results

To show the validity of this novel formulation, we consider a nonlinear optical
medium with the following properties:

αL = j
εs − ε∞√
ω2

0 − δ2
ω2

0 , γL = δ + j
√
ω2

0 − δ2,

αNL = j
τ2
1 + τ2

2

τ1τ2
2

χ
(3)
0 , γNL =

1
τ2

+ j
1
τ1
,
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where εs is the static permittivity, ω0 the resonant frequency and δ is the
damping coefficient. (1/τ1) is the optical phonon frequency, (1/τ2) is the
phonon bandwidth and χ(3)

0 is the nonlinear coefficient.
The values of the parameters of the analyzed medium are [7]: εs =

5.25; ε∞ = 2.25; ω0 = 4.0 × 1014 rad/s; δ = 2.0 × 109 s−1, τ1 = 12.2 fs;
τ2 = 32.0 fs; χ(3)

0 = 21.0 × 10−3 V−2 and α
(3)
0 = 49.0 × 10−3 V−2. The con-

sidered TLM mesh dimensions are (1,1, 8000)∆l with ∆l = 25.010−9 m. The
air-nonlinear dispersive medium interface is located at z = 8∆l. The non-
linear medium is excited by a unit amplitude pulse with a sinusoidal carrier
frequency fc = 1.371014 Hz considering a hyperbolic secant envelope function
with a characteristic time constant of 14.6 fs [7]. Fig. 1 depicts the behav-
ior of a pulse propagating in a nonlinear medium after 12000 and 24000
iterations respectively. This shows for both numbers of iterations a stable
soliton conserving its amplitude and width and another soliton with very
weak amplitude. The agreement between our results and those presented in
references [7, 9] and [12] is very good. Fig. 2 illustrates the variations of the
normalized nonlinear admittance Yox(t) of the capacitive stub of the HSCN.
Fig. 3 gives the Fourier transforms of the main solitons present in the non-
linear medium after 12000 and 24000 iterations. Here again, the behavior of
the numerical TLM results is similar to that presented in [7] and [9].

Fig. 1. TLM results of the propagation in the nonlinear
optical medium after 12000 and 24000 time step.
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Fig. 2. The normalized admittance Yox(t) of the capaci-
tive stub of the HSCN after 12000 and 24000 time
steps.

Fig. 3. Fourier spectrum of the soliton of Fig. 1.
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4 Conclusion

A novel HSCN-TLM approach is proposed for the simulation of the nonlinear
optical media. It is based on the piecewise linear convolution discretization
(PLRC) technique, the introduction of voltage sources modeling linear and
nonlinear properties and the introduction of the variable admittance con-
cept. This model has been illustrated for media with quantic effects. The
obtained numerical results validate this model and prove its contribution to
the development of the TLM method to model nonlinear optical media.
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