
IEICE Electronics Express, Vol.2, No.21, 530–535

Converting matrices
between ternary helix and
Reed-Muller transforms
over Galois Fields

Bogdan J. Falkowski1a) and Cheng Fu1

1 School of Electrical and Electronic Engineering

Nanyang Technological University

50 Nanyang Avenue, Block S1, Singapore 639798

a) efalkowski@ntu.edu.sg

Abstract: In this article, new relations between ternary helix and
Reed-Muller transforms have been analyzed. In addition, the new
converting matrices and corresponding hardware implementations in
Galois Field (3) that can convert directly between ternary helix and
Reed-Muller spectra have also been presented.
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1 Introduction

Most of the digital VLSI/ULSI circuits that are used presently are based
on binary logic which has been found to be reliable and compact. However,
lately there is an increasing interest in circuits based on multiple-valued logic.
This interest is fueled by their potential advantages over the binary ones,
such as increased data processing capability per unit area, reduced number
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of complexity of interconnections, as well as smaller number of active devices
inside a chip. Multiple-valued logic allows circuits to have simpler, more
flexible and more compact implementation with higher speed and reduced
power dissipation. Among the papers written on multiple-valued logic, quite
a large number of them are on the design and implementation techniques
as well as applications of 3-valued logic or ternary logic [1, 2]. The ternary
logic has some inherent advantages in an environment where a ’middle’ state
between two outer ones can be found in which the outer devices are either
both on or both off, as well as in the environment where two binary elements
are combined at an upper and lower signal levels. Proposed applications of
ternary logic include fail-safe logic and detection of hazard in binary logic
circuits [1] as well as evaluation of logic functions in the presence of unknown
inputs [2]. The ternary logic in Galois Field (GF) (3) is also used for error-
correcting codes in CDMA systems [3].

In this article, properties and mutual relations of two ternary transforms
over GF(3) are considered. The first one is well-known Ternary Reed-Muller
(TRM) transform [4] while the second one, introduced by these authors in [5],
is named helix transform due to the symmetrical structure along the diagonal
or reverse-diagonal in the transform matrices. The presented relations and
properties show that both ternary transforms are directly related through
converting matrices that can be easily implemented in hardware.

2 Basic definitions

Definition 1. Let Mn be a N × N(N = 3n) matrix with columns corre-
sponding to some ternary functions of n variables. If the set of columns is
linearly independent with respect to ternary Galois Field, then Mn has one
unique inverse M−1

n over GF(3) and is said to be linearly independent, i.e.

Mn · M−1
n = In, (1)

where In is a identity matrix with order N and all the operations are per-
formed over GF(3).

The linearly independent transform based on Definition 1 can be de-
scribed by the following general formulae,

Mn · −→A = −→
F (2)

and
M−1

n · −→F = −→
A (3)

where −→
F =

[
f0, f1, ..., f3n−1

]T
is a column vector defining the truth

vector of a ternary function f(xn) in natural ternary ordering, Mn is a ma-
trix of order N defined by any linearly independent set of n-variable ternary

functions and −→
A =

[
a0, a1, ..., a3n−1

]T
is the spectra coefficient col-

umn vector for the particular transform matrix Mn while T is the matrix
transpose operator.c© IEICE 2005
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Formula (2) can be also expressed by

f(xn) =
3n−1∑
i=0

aigi (4)

where gi denotes a ternary discrete function, which truth vector constitutes
the number i+1 column of the matrix Mn, 0 ≤ i ≤ 3n −1 and all operations
are over GF(3).

3 Properties and relations

The Ternary Reed-Muller (TRM ) transform is defined by the following equa-
tion from [4].
For order N ,

TRMn =
n−1⊗ TRM1 =

n−1⊗
⎡
⎢⎣

1 0 0
1 1 1
1 2 1

⎤
⎥⎦ , (5)

where “
n−1⊗ ” represents Kronecker product [4] applied n − 1 times to the

matrix with additions and multiplications over GF(3) and n is the number
of ternary variables.

In Table I, the ternary functions of TRM transform for n = 2 are pre-
sented.

Table I. Functions of TRM transform for n = 2
x2 x1 a〈TRM〉
0 0 f0

0 1 2f1 + f2

0 2 2f0 + 2f1 + 2f2

1 0 2f3 + f6

1 1 f4 + 2f5 + 2f7 + f8

1 2 f3 + f4 + f5 + 2f6 + 2f7 + 2f8

2 0 2f0 + 2f3 + 2f6

2 1 f1 + 2f2 + f4 + 2f5 + f7 + 2f8

2 2 f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8

The basic 3 × 3 matrix of the Left-Positive-Helix (LPH ) transform are
given by,

LPH1 =

⎡
⎢⎣

1 0 0
1 1 1
0 0 1

⎤
⎥⎦ . (6)

For order N , LPH transform matrix is derived from the basic matrix by
Kronecker product as shown in the following equation,

LPHn =

⎡
⎢⎣

LPHn−1 On−1 On−1

LPHn−1 LPHn−1 LPHn−1

On−1 On−1 LPHn−1

⎤
⎥⎦ =

n−1⊗ LPH1 . (7)
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The inverse transform matrix of LPH for order N can be derived by
calculating their Kronecker product from the inverse matrix of (6).

LPH−1
1 =

⎡
⎢⎣

1 0 0
2 1 2
0 0 1

⎤
⎥⎦ . (8)

For order N ,

LPH−1
n =

⎡
⎢⎣

LPH−1
n−1 On−1 On−1

2 · LPH−1
n−1 LPH−1

n−1 2 · LPH−1
n−1

On−1 On−1 LPH−1
n−1

⎤
⎥⎦ =

n−1⊗ LPH−1
1 . (9)

The ternary functions of LPH transform for n = 2 are given in Table II.

Table II. Functions of LPH transform for n = 2
x2 x1 a〈LPH〉
0 0 f0

0 1 2f0 + f1 + 2f2

0 2 f2

1 0 2f0 + f3 + 2f6

1 1 f0 + 2f1 + f2 + 2f3 + f4 + 2f5 + f6 + 2f7 + f8

1 2 2f2 + f5 + 2f8

2 0 f6

2 1 2f6 + f7 + 2f8

2 2 f8

Table II shows that some spectral coefficients can be obtained directly
from the truth vector and require no computational cost. There are some
connections between the ternary representation of the row number of the
coefficients’ vector and the truth vector, as shown in the following properties.
Property 1. The row i in the spectral coefficients’ vector of LPH trans-
form can be obtained without any computational cost, where the ternary
representation of the row number i does not contain any ‘1’s.

Four coefficients in the spectra of LPH , a(00), a(02), a(20) and a(22), are
obtained directly from f0, f2, f6 and f8, all of which have the same subscripts,
respectively.

For n = 2, the spectra of TRM can be derived from LPH transform by
the following equation,

−−−−→
ATRM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0
2 0 0 2 0 0 0 0 0
1 1 0 1 1 0 0 0 0
2 1 2 2 1 2 0 0 0
1 0 0 2 0 0 1 0 0
2 2 0 1 1 0 2 2 0
1 2 1 2 1 2 1 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×−−−→
ALPH
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The transform matrix of size 3n×3n between LPH and TRM is denoted
by Qn. The following equations give the definition of Qn. For order N ,

Qn =
n−1⊗ Q1 =

n−1⊗
⎡
⎢⎣

1 0 0
2 2 0
1 2 1

⎤
⎥⎦ . (10)

The transform Qn is a self-inverse transform matrix and it is also extended
from the basic matrix Q1 as shown below:

Q−1
n =

n−1⊗ Q−1
1 =

n−1⊗
⎡
⎢⎣

1 0 0
2 2 0
1 2 1

⎤
⎥⎦ . (11)

Due to this property, the spectra −−−→
ALPH can be presented by the spectra−−−−→

ATRM by the equation below,

−−−→
ALPH = Qn ×−−−−→

ATRM . (12)

Similar relations also exist between RPH and TRM transforms. The
general transform matrix

�

Qn connecting RPH and TRM transforms is
given by

�

Qn =
n−1⊗ �

Q1 =
n−1⊗

⎡
⎢⎣

1 1 0
0 0 1
2 0 2

⎤
⎥⎦ . (13)

The general inverse transform matrix of
�

Qn is given by

�

Q
−1

n =
n−1⊗ �

Q
−1

1 =
n−1⊗

⎡
⎢⎣

0 1 1
2 2 2
0 2 0

⎤
⎥⎦ . (14)

−−−−→
ARPH spectra can be expressed by −−−−→

ATRM spectra as shown below:

−−−−→
ARPH =

�

Q
−1

n ×−−−−→
ATRM . (15)

In our previous article [5], the permutation properties of the four types
of helix transforms are presented. These properties also exist in the relations
between helix transform and TRM transform. Due to their properties, the
transform matrix

�

Qn connecting LNH and TRM transforms can be derived
by horizontal permutation of all the elements inside the matrix Qn. For order
N ,

�

Qn =
n−1⊗ �

Q1 =
n−1⊗

⎡
⎢⎣

0 0 1
0 2 2
1 2 1

⎤
⎥⎦ . (16)

The inverse transform matrix
�

Qn is obtained by vertical permutation on
all the elements inside the inverse transform matrix Q−1

n .

�

Q
−1

n =
n−1⊗ �

Q
−1

1 =
n−1⊗

⎡
⎢⎣

1 2 1
2 2 0
1 0 0

⎤
⎥⎦ . (17)c© IEICE 2005
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The connecting transform matrix Q̃n between RNH and TRM trans-
forms is derived from

�

Qn by horizontal permutation on all the elements inside
the matrix.

Q̃n =
n−1⊗ Q̃1 =

n−1⊗
⎡
⎢⎣

0 1 1
1 0 0
2 0 2

⎤
⎥⎦ . (18)

Similarly, the inverse transform matrix Q̃−1
n is derived from

�

Q
−1

n by hor-
izontal permutation on all the elements inside the matrix.

Q̃−1
n =

n−1⊗ Q̃−1
1 =

n−1⊗
⎡
⎢⎣

0 2 0
2 2 2
0 1 1

⎤
⎥⎦ . (19)

Fig. 1 presents the circuit realizations of the transform matrix Qn for
n = 1 and n = 2 using GF(3) operations.

4 Conclusion

The detailed analysis of relations between ternary helix and Reed-Muller
transforms is shown in this article. The presented properties and relationships
give an efficient method to calculate the corresponding spectral polynomial
expansions of any ternary logic function directly between ternary helix and
Reed-Muller transforms. The whole transfer between both transforms and
their spectra can be implemented in hardware by using basic operators over
GF (3). The presented results will be very useful, especially for ternary func-
tions with big number of variables. In addition, all the properties presented
here have simple procedures and can be implemented not only in hardware
but also in software by using parallel programming.

Fig. 1. Circuit realizations of Qn for n = 1 and n = 2.
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