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1 Introduction

Fractal signals are a class of nonstationary processes that have power spec-
trum, so also known as 1/f signals or 1/f processes. A 1/f process is used to
describe many physical phenomena, such as variation in temperature, traf-
fic flow, electronic device noises. A well known model for these processes is
fractal Brownian motion (fBm) proposed by Mandelbrot and van Nees [1].c© IEICE 2005
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Many research works focused on the generation of 1/f signals and the es-
timation for 1/f signals in presence of noise, where wavelet transform, as an
adequate tool, was naturally used. Wornell [2] first presented an orthogonal
wavelet basis expansion for 1/f processes in terms of a collection of uncorre-
lated random variables. Using such representation, algorithm for obtaining
Bayesian minimum mean-square error signal estimation for 1/f processes is
derived in [3] (WO algorithm). WO algorithm is based on the hypotheses
that the orthogonal wavelet transformation is a whitening filter for 1/f sig-
nals and the approximation term of the wavelet expansion can be avoid when
the number of scales in the mutiriresolution analysis is large enough. So the
solution of the problem is simplified. To improve WO algorithm, Hirchoren
considered the effect of the correlation of wavelet coefficients of fBm in each
scales and design a bank of Wiener filters [4] and Kalman filters [5] using
orthogonal wavelet transformation. However, the results obtained depend on
the fBm model. In this paper, we consider the representation of 1/f sig-
nals based on DYWT that is of special interest in many applications such as
transient detection. We model the sequences of dyadic wavelet coefficients in
each scale as Markov processes, and give the approximated expressions of the
autocorrelation function of dyadic wavelet coefficients that are not dependent
on fBm model. This modeling is effective and very accurate. Numerical ex-
perimental results indicate that the signal generated by our method is more
close to 1/f signals. On this basis, a new signal estimation algorithm for
1/f -type signal embedded in white noise is presented.

2 Representation of 1/f -type signals

A 1/f signal is a statistically-similar random process having power spectrum
obeying a power law relationship of the form

Sf (ω) ∝ 1
|ω|γ (1)

where γ is called as spectrum parameter. Our aim is to establish the ap-
proximated representation of a 1/f signal by starting from a collection of
zero-mean, second-order random processes. In the following discussions, we
suppose that w(m, b)(m ∈ Z) is a Markov process in b for any fixed m, and
satisfies, for some γ > 0, σ2 > 0 and ρ > 0

Rw(m, τ) = E[w(m, b)w(m, b− τ)] = σ22γme−2−mρ|τ |, ∀m ∈ Z (2)

E[w(m1, b)w(m2, b)] = 0, m1 �= m2, ∀m1,m2 ∈ Z (3)

Using w(m, b), we define a new random process as

f(t) =
∞∑

m=−∞

∫

R

2−mw(m, b)ψm,b(t)db, t∈ R (4)

where ψm,b(t) = 2−m/2ψ(2−m(t− b)), ψ(t) is a dyadic wavelet. Then we have
the following results.
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Theorem 1 Let ψ(t) be a real dyadic wavelet with N-th order regularity for
N > γ/2− 1 and γ > 0. Then the power spectrum of f(t) defined by Eq. (4)
is

Sf (ω) =
∞∑

m=−∞
2γmG(2mω)|

∧
ψ (2mω)|2 (5)

and satisfies the following inequality

σ2
L

|ω|γ ≤ Sf (ω) ≤ σ2
M

|ω|γ (6)

for some 0 < σ2
L ≤ σ2

M , where G(2mω) = 2σ2ρ/(ρ2 + 22mω2), and
∧
ψ (ω)

denotes the Fourier transform of the wavelet ψ(t).

The proof of the Theorem 1 sees Appendix. The inequality (6) indicates
that the expression (4) is a approximated representation of a 1/f signal with
the parameter γ.

Table I gives the numerical experimental results corresponding to the
spectral parameter γ = 1.0, 1.5, 2.0, 2.5, 3, and ρ = 0.5. The approxima-
tion error is denoted by the ratio σ2

M/σ
2
L where σ2

L = inf
ω

(|ω|γSf (ω)) and

σ2
M = sup

ω
(|ω|γSf (ω)). Ewor and Eour denotes the approximation error re-

sulted from the Wornell’s method [2] and our method respectively. In our
experiments, Daubechies 2th-order (Db2) wavelet and biorthogonal wavelet
Bi9/7 are adopted. But we do not compute the error Ewor with Bi9/7 due to
the supposition of the orthogonality for wavelet in Wornell’s method. We can
see that the approximation errors Eour are always lower than Ewor except the
case γ = 1. When γ tends to 3, Eour is much less than Ewor. In addition, the
approximation errors Eour very close to 1, which means that the modeling of
wavelet coefficients by Markov processes is accurate.

Table I. Approximation errors

γ 1.0 1.5 2.0 2.5 3.0
Db2 Ewor 1.0500 1.1285 1.4125 2.3268 5.5885
Db2 Eour 1.0342 1.0364 1.0378 1.0387 1.0502

Bi9/7 Eour 1.1160 1.1001 1.0781 1.0490 1.0441

3 Signal estimation problem

Consider a received signal

r(t) = f(t) + v(t), −∞ < t <∞ (7)

where f(t) is a zero-mean 1/f signal embedded in an additive stationary
white Gaussian noise v(t) with zero-mean and variance σ2

v , and it is mutually
independent with v(t).

We define the DYWT of any x(t) ∈ L2(R) as

Wx(m, b) = 2−m
∫

R
x(t)ψm,b(t)dt
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Then, applying the DYWT to Eq. (7), we can get the DYWT of r(t)

Wr(m, b) = Wf (m, b) +Wv(m, b) (8)

where Wf (m, b) and Wv(m, b) are the DYWT of f(t) and v(t), respectively.
For the fixed m, we model Wv(m, b) as a white noise with variance σ2

v , and
Wf (m, b) as a Markov process that satisfies Eq. (2) and Eq. (3). Based
on this, It follows immediately using classical estimation theory that the
estimation of Wf (m, b) that minimizes the mean-square estimation error is
given by

∧
W (m, b) = AmWr(m, b) +BmWr(m, b1), b1 < b (9)

Am =
K(m) − L(m)
K2(m) − L(m)

, Bm =
[K(m) − 1](L(m))1/2

K2(m) − L(m)

where K(m) = 1 + σ2
v/(2

γmσ2) and L(m) = e−2−m+1ρ|b−b1|. By this estima-
tion, the optimal estimation of the 1/f signal f(t) can be expressed as

∧
f (t) =

∞∑
m=−∞

2−m
∫

R

∧
W f (m, b)

∼
ψm,b (t)db, t ∈ R (10)

where
∼
ψ (t) is the reconstruction wavelet corresponding to ψ(t).

In practice, we can only obtain a segment of observed data that is both
time-limited and resolution-limited. In this case, we suppose the sampling
interval in t is 1. Then Eq. (7) can be rewritten as

r(n) = f(n) + v(n), n = 1, 2, 3, · · ·, 2N (11)

So, we can take |b− b1| to be 1. The dyadic wavelet representation of r(n) is
defined as the set of wavelet coefficients up to a scale 2M (M ≤ N) plus the
remaining low-frequency information aM (n):

{Wr(m,n), aM (n) |m≤M, 1≤n≤2N}

that can be calculated by a filter bank algorithm [6] called the algorithme á
trous.

4 Estimation of the parameters σ2 and ρ

We consider the estimation of the parameters σ2 and ρ with observed data
when the parameters γ and σ2

v are known. The general problem of estimat-
ing the parameter of a Gaussian 1/f signal was discussed in [3] where the
coefficients of DWT for 1/f signal was modeling as mutually independent
zero-mean, Gaussian random variables.

Suppose that the DYWT Wf (m,n) of f(n) in Eq. (11) satisfies Eq. (2)
and Eq. (3). We take τ to be 0 and 1 in Eq. (2), respectively. Then

var(Wf (m,n)) = σ22γm, RWf
(m, 1) = σ22γme−2−mρ
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where RWf
(m, τ) denotes the autocorrelation function of Wf (m,n). By the

above equations, we can derive the estimation of σ2 and ρ with observed data
r(n), ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∧
σ

2
= 1

M2N

M∑
m=1

2−γm
2N∑
n=1

[W 2
r (m,n) − σ2

v ]

∧
ρ= 1

M

M∑
m=1

2m[ln(σ22γm) − ln(RWr(m, 1))]
(12)

where RWr is the autocorrelation function of Wr(m,n)

5 Experiment

In this section, we will demonstrate the performance of the signal estimation.
The 1/f signal f(n) with a length of 2048 is generated from the Wavelab802
(http://WWW-stat.stanford.edu./ wavelab). To show the efficiency of our
algorithm, we assume that γ is given a priori and f(n) is embedded in additive
Gaussian white noise with the variance σ2

v = 4.
Table II gives the mean-square errors by our estimation method with

Daubechies 3-th wavelet (Db3) and Bi9/7, denoted by MSEour, as well as
those obtained by the WO algorithm with Db3, denoted by MSEwo. We
used a scale from 21 - 211 (M = 11) in both cases. The estimation errors
shown are the results of the averaged error from 64 realizations of noisy data.
The parameters σ2 and ρ are estimated by Eq. (12). As seen in Table II, the
errors resulted from our method are much less than those from WO algorithm
for γ > 2. In the other case of γ ≤ 2, our method has slightly lower mean-
square errors, which also means that the WO algorithm is indeed a simple
and good method for fractal signal estimation. From these numerical results,
we can conclude that Markov random field is a good modeling for wavelet
coefficients. We also note that it is necessary to further improve our signal
estimation method when γ ≤ 2.

Table II. Approximation errors

γ 2.9 2.7 2.5 2.0 1.9
Db3 MSEwo 0.7353 0.5736 1.0217 3.0833 12.0792
Db3 MSEour 0.3089 0.3598 0.6205 2.4089 10.0670
Bi9/7 MSEour 0.3123 0.3636 0.6256 2.4228 10.1097

6 Conclusion

The dyadic wavelet transform provides a translation-invariant wavelet rep-
resentation of 1/f signals that is very useful in many applications such as
physiological and computer vision studies. In this paper, we have studied
the representation of these signals and signal estimation based on Markov
random fields. Our next research works is going to develop the parameters
estimation for 1/f signals with our wavelet model.
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Appendix: The proof of theorem 1

By the definition of f(t), for any integer p = 2n, n ∈ Z,

E[f(pt1)f(pt2)] =
∞∑

m=−∞
2−3m

∫

R2

Rw(m, b− c)ψm,b(pt1)ψm,c(pt2)dbdc

Applying the changing of variables with b = px, c = py, we have E[f(pt1)
f(pt2)] = pγ−1E[f(t1)f(t2)]. Therefore f(t) is a statistically self-similar pro-
cess.

By Eq. (2), the power spectrum of f(t) is,

Sf (ω) =
∫

R3

Rf (t, τ)e−jωτdτ

=
∞∑

m=−∞

∫

R3

σ22γm−2me−2−mρ|b−c|ψm,b(t)ψm,c(t− τ)e−jωτdbdcdτ

=
∞∑

m=−∞

∫

R2

σ22γm−3m/2e−2−mρ|b−c|ψm,b(t)

−
∧
ψ (2mω)e−jω(t−c)dbdc

=
∞∑

m=−∞

∫

R

2(γ−1/2)m+1σ2ρ

ρ2 + 22mω2
ψm,b(t)

−
∧
ψ (2mω)e−jω(t−b)db

=
∞∑

m=−∞
2γm 2σ2ρ

ρ2 + 22mω2
|
∧
ψ (2mω)|2

So Eq. (5) holds.
Now we prove the inequality (6). Noting that there exist a integer k and

real number 1 ≤ ω0 ≤ 2 such that ω = 2kω0, we conclude that

Sf (ω) =
ωγ

0

(2kω0)
γ

∞∑
m=−∞

2γmG(2mω0)|
∧
ψ (2mω0)|2 (13)

Denote the series on the right side of the above equation by U(ω0). We need
to show the convergence of this series. Since ψ(t) has Nth-order regularity,
∧
ψ (ω) decays at least as fast as 1/|ω|N as |ω| −→ ∞. This implies that for

any ω0 ∈ [1, 2], |
∧
ψ (2mω0)| ≤M/(1 + |2mω0|N ), where M > 1. On the other

hand, it is easily verified that |G(2mω0)| ≤ C2−2m for some C when m > 0.
Hence, we have the following estimation when γ > 0 and N > γ/2 − 1,

0 ≤ U(ω0) ≤
−1∑

m=−∞
2γm+1σ2M2 +

∞∑
m=0

2γm−2m(N+1)CM2ω−2N
0 <∞

This implies that U(ω0) is uniformly convergent and continuous on [1, 2].
Moreover, min

1≤ω0≤2
U(ω0) > 0. To show this, it suffices to show U(ω0) > 0 for

any ω0 ∈ [1, 2]. Suppose that there exists
∼
ω0∈ [1, 2] such that U(

∼
ω0) = 0, i.e.,

Sf (
∼
ω0) = 0. Since G(2m ∼

ω0) > 0, so we have that
∞∑

m=−∞
|

∧
ψ (2m ∼

ω0 ) | =

0. However, this contradicts the supposition that ψ is a dyadic wavelet.
Therefore, we must have that min

1≤ω0≤2
U(ω0) > 0. Using Eq. (13), it is easy to

show the inequality (6). The proof is completed.
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