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Abstract: This paper presents an approach to boost the performance
of pseudo Zernike moments in face recognition. This approach is a
hybrid of a kernel trick, discriminant function and pseudo Zernike mo-
ments (PZM), namely as Kernel-based Fisher Pseudo Zernike Moments
(KFPZM). KFPZM maps the moment-based features into a high di-
mensional feature space via kernel function for disclosing the underlying
variables which carry significant information about the image. Then,
it performs discriminant analysis onto the mapped features to enhance
the discrimination power via Fisher’s Linear Discriminant (FLD). Ex-
perimental results show that the proposed method outperforms the sole
PZM and the integrated FLD with PZM methods, achieving recogni-
tion rate of 98.11% and 93.03% in the face databases with facial ex-
pression variations and illumination variations, respectively.
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1 Introduction

Moment functions model an image into a compact subspace represented by
moment bases. Small number of moments is sufficient to describe most of the
image structure. Therefore, Haddadnia et al. employed moment functions in
face recognition [1]. [1] and [2] reported that pseudo Zernike moments show
the recognition rate of 98.73% by using radial basis function neural network
classifier, and 93.46% using Euclidean distance, respectively. Indeed, the
performance of moment functions can be further improved by integrating
a kernel and discriminant functions into moment analysis without resorting
any complex classifier, likes neural network. Thus, in this paper, Kernel-
based Fisher Pseudo Zernike Moments (KFPZM) method is proposed for
face recognition.

Inspired by the ideas of Kernel PCA [3] and Kernel LDA [4], KFPZM
combines a kernel trick with pseudo Zernike moments (PZM) that coupled
with Fisher’s Linear Discriminant (FLD). This integration not only can ac-
count for the variables that implicitly underlie on the image structure, but
also enhances the discrimination power of the moments. Fig. 1 illustrates the
overview of KFPZM. In this method, the image data is firstly transformed
into a set of moment-based features via PZM computation. Then, these fea-
tures are further mapped into a higher dimensional feature space via kernel
function to disclose the underlying variables which carry more significant and
expressive information about the image. Finally, the mapped features are in-
put into FLD to further enhance the discrimination power of the features by
maximizing the between-class scatter and minimizing the within-class scat-
ter.

Fig. 1. Overview of KFPZM method.

2 Pseudo Zernike moments

The two-dimensional pseudo Zernike moments of order p with repetition q of
image intensity function, f(r, θ), are defined as [5, 6]:

PZpq =
p + 1

π

∫ 2π

0

∫ 1

0
Vpq(r, θ)f(r, θ)rdrdθ (1)

where Zernike polynomials Vpq(r, θ) are defined as:

Vpq(r, θ) = Rpq(r)e−ĵqθ; ĵ =
√−1 (2)
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and r =
√

x2 + y2, θ = tan−1
( y

x

)
, −1 < x, y < 1

The real-valued radial polynomials are defined as:

Rpq(r) =
p−|q|∑
s=0

(−1)s (2p + 1 − s)!
s!(p + |q| + 1 − s)!(p − |q| − s)!

rp−s (3)

and 0 ≤ |q| ≤ p, p ≥ 0
In this study, the considered features are the magnitude of PZpq, abbre-

viated as PZpq,mag, due to their rotation invariant property; the phase infor-
mation is omitted as the influence of phase information is rather insignificant
especially when high order moments are included [7].

3 Kernel-based Fisher Pseudo Zernike Moments

PZM transforms face images into moment-based feature vectors, PZpq,mag, in
input space, R. Then, this input data is projected into a higher dimensional
implicit feature space, F , via nonlinear mapping, Φ : PZpq,mag ∈ R → f ∈ F .
Next, FLD is performed onto the mapped features in order to maximize the
between-class scatter and minimize the within-class scatter. It is no need to
compute Φ explicitly but just compute the inner product of the two vectors,
f , in F with a kernel function:

k(PZpq,mag j , PZpq,mag k) = (Φ(PZpq,mag j).Φ(PZpq,mag k)) (4)

In feature space, F , the between- and within-class scatter, Ŝb and Ŝw respec-
tively, are defined as:

Ŝb =
C∑

i=1

ni(µi − µ)(µi − µ)T (5)

Ŝw =
C∑

i=1

ni∑
k=1

(Φ(PZpq,mag ik) − µi) (Φ(PZpq,mag ik) − µi)T (6)

where

class mean, µi =
1
ni

ni∑
k=1

Φ(PZpq,mag k) (7)

grand mean, µ =
1
n

n∑
j=1

Φ(PZpq,mag j) (8)

Note that C is the number of classes, n is the total number of mapped
samples, ni is the number of mapped samples in ith class and PZpq,mag ik is
the kth moment-based feature vector in ith class.

To perform FLD in F , it is equal to maximize expression [4],

J(w) =
wT Ŝbw

wT Ŝww
(9)

Because any solution w ∈ F must lie in the span of all the samples in F ,
there exist coefficients αj , j = 1, 2, · · · , n, such that

w =
n∑

j=1

αjΦ(PZpq,mag j) (10)
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By expression (10), the projection of each class mean µi onto w can be written

wT µi = αT
n∑

j=1

Φ(PZpq,mag j)
1
ni

ni∑
k=1

Φ(PZpq,mag k)

= αT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ni

ni∑
k=1

Φ(PZpq,mag 1).Φ(PZpq,mag k)

1
ni

ni∑
k=1

Φ(PZpq,mag 2).Φ(PZpq,mag k)

...
1
ni

ni∑
k=1

Φ(PZpq,mag n).Φ(PZpq,mag k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= αT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ni

ni∑
k=1

k(PZpq,mag 1, PZpq,mag k)

1
ni

ni∑
k=1

k(PZpq,mag 2, PZpq,mag k)

...
1
ni

ni∑
k=1

k(PZpq,mag n, PZpq,mag k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= αT Mi (11)

It follows that wT Ŝbw = αT Kbα, where Kb =
C∑

i=1

ni(Mi − M)(Mi − M)T ,

and M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
n

n∑
k=1

k(PZpq,mag 1 , PZpq,mag k)

...
1
n

n∑
k=1

k(PZpq,mag n , PZpq,mag k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
; similar to within-class scat-

ter, wT Ŝww = αT Kwα, where Kw =
C∑

i=1

ni∑
k=1

(ξk − Mi) (ξk − Mi)T , and ξk =

(k(PZpq,mag 1, PZpq,mag k), k(PZpq,mag 2, PZpq,mag k), · · · , k(PZpq,mag n,
PZpq,mag k))T The kernel trick used in this study is Gaussian function:

k(x, y) = exp(−||x − y||2/σ) (12)

where σ is the Gaussian parameter.

4 Experiment

We evaluate the performance of KFPZM method by using two face databases:
Essex Face94 with facial expression variations and Essex Face95 with illu-
mination variations. These databases are made publicly available at URL
http://cswww.essex.ac.uk/mv/allfaces/index.html. In both databases, 10
face samples are used for training and another 10 for testing for each subject.
There are 100 and 72 face classes in Face94 and Face95 databases. Com-
parative analysis is carried out among PZM, integrated FLD and PZM (MF)
and KFPZM methods by using Euclidean distance as classifier.
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Excessive higher order moments comprise redundant and unwanted in-
formation, such as noise, and these high frequency variables may influence
the discrimination power. Thus, the performance of KFPZM method with
different moment orders is evaluated to justify the statement.

5 Results and discussions

Fig. 2 shows the recognition rates of the PZM, MF and KFPZM methods
in both face databases. From Fig. 2, we can see that KFPZM with kernel
parameter, σ = 200 (represented by KMF : G par = 200) obtain the highest
recognition rate of 98.11% (with moment length 160) in Face94 database and
93.03% (with moment length 140) in Face95 database. This demonstrate
that the integration of kernel and FLD with moments helps enhance the
discrimination power by disclosing the underlying significant image features
and maximizing the between-class scatter while minimizing the within-class
scatter.

Fig. 2. Recognition rates of PZM, MF and KFPZM meth-
ods.

However, KFPZM obtains poorer result when higher order moments are
included. This is because higher order moments bring in high frequency
information and redundant data that affect the separability of KFPZM. The
statement is further justified in Table I that KFPZM method with lower
order moments performs better than that with higher order moments.

6 Conclusion

A new approach by using pseudo Zernike moments integrated with kernel and
discriminant functions has been presented in this paper in order to boost the
recognition performance of pseudo Zernike moments on face images. This
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Table I. Performance on different order moments in KF-
PZM method.

Face Kernel Moments
database parameter, σ in order

FAR (%) FRR (%) TSR (%)

Face94

100

1 to 100 4.30 4.30 95.70
100 to 200 10.43 10.40 89.57
200 to 300 17.93 18.10 82.06
300 to 400 21.98 21.70 78.03
400 to 500 24.61 24.40 75.40

200

1to 100 3.02 3.00 96.98
100 to 200 12.08 12.10 87.92
200 to 300 16.33 16.4 83.67
300 to 400 23.55 23.40 76.46
400 to 500 24.30 24.20 75.70

Face95

100

1 to 100 7.50 7.50 92.50
100 to 200 17.14 17.50 82.84
200 to 300 26.16 26.25 73.84
300 to 400 27.72 27.78 72.28
400 to 500 29.61 29.44 70.40

200

1 to 100 6.94 6.95 93.04
100 to 200 14.88 14.86 85.12
200 to 300 20.63 20.70 79.37
300 to 400 31.06 31.25 68.93
400 to 500 32.51 32.36 67.50

method is called Kernel-based Fisher Pseudo Zernike Moments which hy-
brids the Gaussian function and Fisher’s Linear Discriminant with pseudo
Zernike moments. In this approach, the kernel function maps the moment-
based features into a high dimensional space so that the underlying informa-
tive features can be revealed. Fisher’s Linear Discriminant is then performed
onto the mapped features to maximize the between-class scatter and mini-
mize the within-class scatter for increasing the separability of the features.
Experimental results show that the proposed method achieves superior per-
formance than the PZM and MF methods.
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