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Abstract: An efficient method on selecting threshold values accord-
ing to minimax test for packet detection in burst-mode OFDM systems
is proposed. Packet detection decides whether a packet is coming or
not by comparing a threshold value in the wireless receiver. Related
with sliding window size and SNR, the threshold value affects receiv-
ing performance including probabilities of false alarm and miss. The
minimax test for detection based on empirical CDF and survival func-
tions is proposed. Also the performances of two general used detection
methods are surveyed and compared.
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1 Introduction

Some burst-mode wireless communication systems such as WLAN and WPAN
transmit information in each packet with three segments: preamble, header
and data signal [1]. Ahead of any other operations in the receiver, packet
detection shall decide whether a packet is coming or not. Some packet detec-
tion methods only use receiving signal power and easily suffer from a draw-
back: threshold values involving with received power and gain control in
radio-frequency circuits [2]. For a specific communication system supporting
repeated preambles, correlation properties can be used for packet detection
and carrier synchronization in OFDM system, and furthermore these cor-
relation values are divided by power value to eliminate problems of variant
threshold [3]. The correlation and power functions used in the detection
algorithm are defined as

C(n) =
L−1∑
i=0

rn+ir
∗
n+i+D, (1)

and

P (n) =
L−1∑
i=0

|rn+i+D|2, (2)

where rk implies kth complex-valued received sample, L is the sliding window
size and D is the interval of two repeated preambles. Due to that C(n) is
complex-valued and P (n) is real-valued, packet detection has two normalized
functions according to practical implementation methods:

M2(n) =
|C(n)|2
P (n)2

, (3)

and
M1(n) =

|C(n)|
P (n)

. (4)

Derivative of the function M1(n) needs an extra square root operation,
whereas derivative of M2(n) needs an extra square operation and greater
precision representation in practice. In consideration of circuit implementa-
tion, these extra requirements are small enough compared to a full receiver.
Thus we leave aside implement complexity and only consider which one per-
forms better in the detection. On the other hand, the selected threshold
values affect probabilities of detection and false alarm. We adopt a Bayes
test, or called minimax test, to select a proper threshold value by minimizing
the maximum possible risk according to different assumptions of hypothe-
sis probability and risk [4]. Since M1(n) and M2(n) are random variables
(RV) combined with multiple complex-valued RVs in numerators and de-
nominators, their probability density function (PDF) are very difficult to be
calculated in simple deterministic form. Moreover, because only cumulative
distribution functions (CDF) are required in the minimax test, an empirical
CDF can be used to estimate ideal CDF values from a statistical viewpoint.
We adopt the product-limit (PL) method (Kaplan and Meier method) to
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calculate empirical CDFs and use interpolation method to acquire any cu-
mulative probability corresponding to different threshold values [5].

Most OFDM systems transmit through frequency-selective fading chan-
nels, which can be viewed as time-variant linear filters with random coef-
ficients of amplitude, phase and delay. The received equivalent baseband
signal can be viewed as

xb(t) =
Np∑
k=1

αk(t) exp(−jθk(t))sb(t − τk(t)), (5)

where sb(t) is the transmitted baseband signal, αk, θk, τk are time-variant
coefficients, and Np is the number of resolvable paths. After passing through
the fading channel, the signal is disturbed at the receiver by additive white
Gaussian noise (AWGN) with zero mean and variance σ2

n. Then the instan-
taneous signal-to-noise ratio (SNR) is defined as

γ(t) = E[|xb(t)|2]/σ2
n. (6)

The received discrete samples after analog-to-digital converter are repre-
sented as the sum of xb(t) and AWGN both multiplied by a RF gain GRF

and sampled by Ts:
rk = GRF [xb(kTs) + wk], (7)

The AWGN is given as wk = wI,k + jwQ,k and wI,k, wQ,k ∈ N(0, σ2
n/2).

The RF gain GRF will be canceled in (3) and (4), which is the main purpose
of the normalization. Thus the detection function is no longer relative to
GRF .

Define two hypotheses for two detection conditions:{
H1 : a packet has been transmitted
H0 : no packet has been transmitted

. (8)

Let NL(0, σ2
x) be an independent Gaussian vector whose components are

independent Gaussian RVs with zero mean and equal variance σ2
x. Define

two complex-valued independent Gaussian vectors as W (i) = W
(i)
I + jW

(i)
Q ,

i = 1, 2 with W
(i)
I and W

(i)
Q ∈ NL(0, σ2

n/2). Therefore, for H0 is true, the
power function P (n) can be represented as the squared norm of the Gaussian
vector:

H0 is true:

P (n) =
L∑

i=1

|wn+i+D|2 =
∥∥∥W (2)

∥∥∥2
=
∥∥∥W (2)

I

∥∥∥2
+
∥∥∥W (2)

Q

∥∥∥2 , (9)

where
∥∥∥W (2)

I

∥∥∥2
and

∥∥∥W (2)
Q

∥∥∥2
are central chi-square RVs with L degrees of

freedom. Thus P (n) in (9) is a central chi-square RV with 2L degrees of
freedom:

pP (n)|H0
(y|H0) =

1
σ2

nΓ(L)

(
y

σ2
n

)L−1

exp
(
− y

σ2
n

)
, y ≥ 0, (10)
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where Γ(x) is a Gamma function [6]. For H0 is true, the correlation function
C(n) can be viewed as an inner product of two complex-valued independent
Gaussian vectors:

H0 is true:

C(n) =
L−1∑
i=0

wn+iw
∗
n+i+D = W (1) · W (2)∗

= (W (1)
I + jW

(1)
Q ) · (W (2)

I − jW
(2)
Q )

= [W (1)
I · W (2)

I + W
(1)
Q · W (2)

Q ] + j[W (1)
Q · W (2)

I − W
(1)
I · W (2)

Q ]

≡ [K(1)
L + K(2)

L ] + j[K(3)
L − K(4)

L ] ≡ K(1)
2L + jK

(2)
2L

, (11)

where K
(i)
n is a RV as inner product of two independent Gaussian vectors with

identical variance σ2 = σ2
n/2, whose PDF is given below (for n = 2m) [6]:

pK(x) =
1

σ2Γ(m)
exp

(
−|x|

σ2

)m−1∑
i=0

Γ(m + i)
2m+iΓ(i + 1)Γ(m − i)

( |x|
σ2

)m−1−i

. (12)

For H1 is true, the indoor time-variant channel can be viewed static within
D samples because of low Doppler frequency. Thus assume the two complex-
valued signal vectors are almost the same:

X
(1)
b = [xb,n . . . xb,n+L−1]T ∼= X

(2)
b, = [xb,n+D . . . xb,n+D+L−1]T, (13)

Then P (n) given H1 is true can be represented as

H1 is true:

P (n) =
L∑

i=1

|xb,n+i+D + wn+i+D|2 =
∥∥∥X(2)

b + W (2)
∥∥∥2

=
∥∥∥X(2)

b,I + W
(2)
I

∥∥∥2
+
∥∥∥X(2)

b,Q + W
(2)
Q

∥∥∥2

, (14)

which can be viewed as a noncentral chi-square RV with 2L degrees of free-
dom:

pP (n)|H1(y|H1)=
1

2σ2

(
y

a2

)(L−1)/2

exp

(
−y + a2

2σ2

)
IL−1

⎛
⎝
√

a2y

σ4

⎞
⎠ , y ≥ 0,

(15)
where

σ2 = σ2
n/2

a2 =
∥∥∥X(2)

b,I

∥∥∥2
+
∥∥∥X(2)

b,Q

∥∥∥2
=
∥∥∥X(2)

b

∥∥∥2
=

L−1∑
i=0

|xb,n+i+D|2 . (16)

From (6) the noncentral parameter a2 can be represented by instanta-
neous SNR as a2 = γLσ2

n. Therefore the noncentral chi-square RV in (15) is
not related to the distribution of Xb, but only involved with SNR value and
noise power instead. For H1 is true, the correlation C(n) is given as
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H1 is true:

C(n) =
L−1∑
i=0

(xb,n+i + wn+i)(xb,n+i+D + wn+i+D)∗

= (X(1)
b + W (1)) · (X(2)

b + W (2))∗

= X
(1)
b · X(2)∗

b + X
(1)
b · W (2)∗ + X

(2)∗
b · W (1) + W (1) · W (2)∗

= γLσ2
n + (X(1)

b,I + jX
(1)
b,Q) · (W (2)

I − jW
(2)
Q )

+ (X(2)
b,I − jX

(2)
b,Q) · (W (1)

I + jW
(1)
Q ) + W (1) · W (2)∗

=
[
γLσ2

n + X
(1)
b,I · W (2)

I + X
(1)
b,Q · W (2)

Q + X
(2)
b,I · W (1)

I

+ X
(2)
b,Q · W (2)

Q + K
(1)
2L

]
+ j[X(1)

b,Q · W (2)
I − X

(1)
b,I · W (2)

Q + X
(2)
b,I · W (1)

Q − X
(2)
b,Q · W (1)

I

+ K
(2)
2L ]

, (17)

The inner product of a constant vector and a Gaussian vector is still
a Gaussian RV with zero mean and variance equal to the original variance
multiplied by the norm of the constant vector, e.g. the term X

(1)
b,I · W (2)

I in

(17) is a Gaussian RV with variance equal to
∥∥∥X(1)

b,I

∥∥∥2 · σ2
n/2. Therefore the

middle four terms in the real part of (17) integrate into a Gaussian RV with

variance equal to
∥∥∥X(1)

b

∥∥∥2
σ2

n = γLσ4
n. The first four terms in the imaginary

part has the same variance. Thus (17) can be simplified as

C(n) =
(
Z(1) + K

(1)
2L

)
+ j

(
Z(2) + K

(2)
2L

)
, (18)

where Z(1) ∈ N(γLσ2
n, γLσ4

n) and Z(2) ∈ N(0, γLσ4
n). When SNR is large

enough, C(n) is close to a complex-valued Gaussian RV. The PDF of image
and imaginary parts in (18) can be acquired by joint PDF:

pCI(n)|H1(y|H1) =
∫ ∞

−∞
pZ(1)(x)p

K
(1)
2L

(y − x)dx. (19)

Although the PDFs of (1) and (2) for two hypotheses H0 and H1 are
derived, the distribution of M1(n) and M2(n) still can not be derived because
of the dependence between the numerator and denominator. But we can
conclude from (10) (12) (15) (18) that the detection functions only involve
with SNR and window size Linstead of received signals and channels. This
helps to build a simulation of RVs and to clarify relative parameters.

2 Empirical CDF and minimax test for threshold values

According to different window sizes and SNR values, we build a RV simu-
lation with Ns tests for the detection functions M1(n) and M2(n) and use
nonparametric method to estimate empirical CDFs. The PL method is used
here to acquire CDF and survival functions [5]. Assume there are Ns sam-
ples observed and we sort them in ascending order such that s(1) ≤ s(2) . . . ≤
s(Ns−1) ≤ s(Ns). The survival function is given as:

f̂s(s(i)) = f̂s(s(i−1))
Ns − i

Ns − i + 1
, i = 1, 2, . . . , Ns, (20)
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where f̂s(s(0)) = 1 is assumed. The precision of estimates in (20) are depen-
dent on the number of samples Ns, i.e. the minimum precision is 1/Ns. For
a specific value λ, f̂s(λ) can be acquired by linear interpolation:

f̂s(λ) =

⎧⎪⎨
⎪⎩

1, λ < s(0)

interpolation, s(0) ≤ λ ≤ s(Ns)

0, λ > s(Ns)

. (21)

The CDF can be acquired from the survival function:

f̂c(λ) = 1 − f̂s(λ). (22)

Figure 1 shows the empirical CDF and survival curves of M1(n) for two
hypotheses with Ns = 2×106, L=16, 32, 64, and SNR=0, 2, 4, 6 dB, and also
reveals that the survival curves of M1(n) given H0 are only dependent on
window size L. Once a threshold value λ is assigned, we denote some useful
probabilities:

PF =
∫ ∞

λ
pM |H0

(R|H0)dR = f̂s|H0
(λ)

PD =
∫ ∞

λ
pM |H1

(R|H1)dR =f̂c|H1
(λ)

PM = 1 − PD = 1 − f̂c|H1
(λ)

. (23)

Also we denote CF and CM as the costs of false alarm and miss, respec-
tively, and P1 and P0 for the a priori probabilities of H1 and H0.

Then the Bayes risk function is given as [4]:

RB(λ) = P0CF PF (λ) + P1CMPM (λ). (24)

Fig. 1. Empirical CDF and survival curves of packet
detection function M1
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Fig. 2. Receiver operating characteristic and minimax
operating points (L=16, SNR=0, 1, 2, . . . 6 dB)

Figure 2 illustrates the receiver operating characteristic (ROC) of both
detection functions M1 and M2. ROC reveals the relationship between PF

and PD as λ varies. As SNR value decreases or window size increases, the
ROC curves moves toward left-top, which implies higher PD and lower PF

can be achieved. That the ROC curves of M1 and M2 are overlapping implies
the performances of M1 and M2 are equal. Assume P1 = P0, the minimax
equation is

CF PF (λ) = CMPM (λ), (25)

which has solutions of λ corresponding to the intersection points for different
CM and CF ratios in Figure 2. Another approach to find the threshold
value of minimum risk is directly drawing the risk functions as shown in
Figure 3. Obviously the minimum points move as conditions change. Thus
it is important to assign CF , CM , P1 and P0 for the selection of threshold
values. Regarded as a watchdog in the OFDM receivers, packet detection
shall operate at lower SNR required by lowest data transmission rate. In
wireless LAN OFDM systems, the SNR required for 6Mbps for PER=0.1 is
about 5 dB [7]. Therefore SNR values lower than 5 dB shall be considered in
the design of packet detection.

3 Conclusions

The paper verifies that the distributions of both detection functions M1 and
M2 are not related to channels and preamble signals, but only involved with
SNR and the sliding window size. The performances of M1 and M2 are the
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Fig. 3. Risk functions of M1 under three different condi-
tions (L=32)

same according to ROC curves. A strategy to decide threshold values in the
detection is proposed:

1) decide SNR and window size according to system requirement,

2) build RV simulations for two hypotheses H0 and H1,

3) generate empirical CDF and survival functions,

4) select a priori probabilities of hypotheses and costs of false alarm and
miss,

5) draw risk functions and find threshold values corresponding to mini-
mum points.

Sufficient performance can be obtained with the newly proposed packet
detection strategy.
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