
IEICE Electronics Express, Vol.3, No.3, 51–57

Some practical remarks
about Binary Decision
Diagram size reduction

Piotr Porwika), Krzysztof Wrobelb), Piotr Zaczkowski
Institute of Informatics, University of Silesia

41–200 Sosnowiec ul. Bedzinska 39, Poland

a) porwik@us.edu.pl

b) kwrobel@zsk.tech.us.edu.pl

Abstract: In this paper the new spectral method of the variable
ordering in the Binary Decision Diagram (BDD) is introduced. The
problem to find the best order is defined as NP-hard, and optimal
solution can not be finding because optimizing algorithm is running
in O(n!2n) time, and calculations can not be done for the large n.
Such complexity was obviously improved in many algorithms but as
will be demonstrated in this paper size of the BDD can be additionally
reduced. Performed results with another representative methods have
been compared.
Keywords: Boolean function, Binary Decision Diagram, Walsh trans-
form
Classification: Science and engineering for electronics

References

[1] B. J. Falkowski, I. Schafer, and M. A. Perkowski, “Effective Computer
Methods for the Calculation of Rademacher-Walsh Spectrum for Com-
pletely and Incompletely Specified Boolean Functions,” IEEE Trans.
Computer-Aided Design, vol. 11, no. 10, pp. 1207–1226, 1992.

[2] S. J. Friedman and K. J. Supowit, “Finding the Optimal Variable Ordering
for Binary Decision Diagrams,” IEEE Trans. Comput., vol. 39, no. 5,
pp. 710–713, 1990.

[3] J. Lind-Nielsen. BuDDy – Binary Decision Diagrams Library Package
v2.3. University of Copenhagen, Denmark, Nov. 2002.

[4] C. Meinel, F. Somenzi, and T. Theobald, “Linear sifting of decision
diagrams,” Proc. of the 34th Design Automation Conference, DAC’96,
pp. 202–207, 1997.

[5] P. Porwik, “Efficient spectral method of identification of linear Boolean
function,” Control and Cybernetics, vol. 33, no. 4, pp. 663–678, 2004.

[6] R. Rudell, “Dynamic variable ordering for ordered binary decision dia-
grams,” Proc. IEEE/ACM ICCAD’98 Conf., pp. 42–47, 1993.

[7] F. Somenzi, BDD Package: CUDD v.2.3.0.
http://vlsi.colorado.edu/˜fabio/CUDD/cuddIntro.html, 2003.

[8] R. S. Stanković and J. T. Astola, Spectral Interpretation of Decision Di-
agrams, New York: Springer-Verlag, 2003.

[9] I. Wegener, Branching Programs and Binary Decision Diagrams. Theoryc© IEICE 2006
DOI: 10.1587/elex.3.51
Received January 04, 2006
Accepted January 16, 2006
Published February 10, 2006

51

IEICE Electronics Express, Vol.3, No.3, 51–57

and Applications, Philadelphia: SIAM Monographs, 2000.

1 Introduction and preliminaries

Decision Diagrams are the state-of-the-art representation for Boolean func-
tion in Computer-Aided Design applications (CAD) [7, 8, 9]. For functions of
a few variables, such structures can be presented as trees or, after reduction,
as diagrams. In reality, Decision Diagrams (DD) are data structures for dis-
crete functions representation. Decision diagrams are stored in the memory
of a computer as a hash tables (unique table) specifying nodes and inter-
connections among them. Representation of a Boolean function by means
of BDD is very efficient, because building of diagram is carried out in mem-
ory, where only address and pointers of diagram nodes are located. Hence,
BDDs algorithms are very efficient in terms of space and time, especially
when BDDs describe large discrete functions. It can be noticed that DD can
be constructed for completely and incompletely defined functions. If func-
tion is completely defined, efficiency of DDs is similar as FFT-base methods,
but unlike FFT description, DD can be additionally optimized, what will
be explain below. If an n variable Boolean function is weakly defined, es-
pecially when n is large, DD manipulation is very convenient [8, 9]. There
are many cases where conventional algorithms can be significantly improved
by BDDs [5, 7, 8, 9]. For example, computations even with the fast trans-
forms can be difficult, because the truth-table of Boolean functions grows
exponentially with n. Additionally, several variants of DDs are developed
to represent other kinds of discrete functions or function properties such as:
multi-valued functions, Reed-Muller forms, arithmetic formulas, calculation
of spectral coefficients, cube sets, etc. [8]. From this reason, methods based
on the BDDs are preferred.

The BDD is a canonical representation of an n-variable Boolean function
for fixed order of input variables. However, the permutation of the variable
order very often gives different BDD for the same a Boolean function. Hence,
in many cases the size of the BDD can be significantly different. The efficiency
of the BDD representation is determined by the size of the BDD defined as the
number of nodes in the BDD [2, 9]. The size of BDD can be changed by means
of variable ordering and it is continuously an important problem in the BDD
techniques. The size of the BDD for a given Boolean function is sensitive to
the choice of an ordering on the variables. For example the part of adder,
which form carry-out signal, can be represented by n BDD nodes if ordering
is optimal – but if order is another, the BDD has 2n/2 nodes [2]. Although the
efficient algorithms of optimal variable ordering do not exist, some approaches
give much better results than consideration of all n! ordering. The algorithm
with the best worst-case runtime was introduced in [2], where time complexity
of variable ordering is O(n23n) and space complexity is O(3n/

√
n). Currently,

the most popular dynamic reordering technique is sifting algorithm, which
c© IEICE 2006

DOI: 10.1587/elex.3.51
Received January 04, 2006
Accepted January 16, 2006
Published February 10, 2006

52

IEICE Electronics Express, Vol.3, No.3, 51–57

was proposed by Rudell [6]. In this algorithm variables of function are ordered
in natural order (x1, x2, . . . xn). In next stage each variable is moved trough
the variable ordering using swaps. The sifting algorithm tries to find a good
variable ordering of a BDD by successive analyzing each variable, starts from
initial order. The investigated variable is moved through the whole ordering.
Finally, the variable is moved to its optimal position. Because each variable
is moved only once, in sifting procedure only n2 swaps is needed [6]. The
sifting algorithm is stopped if so called increase factor c is achieves [6, 9]. If
c is small algorithm works faster but if c-value is large, more possibilities of
ordering can be explored. Nowadays, the modified sifting algorithm, called
“linear sifting” is used in academic C++ language packages, described among
other things in [3, 4]. If initial order of variables will be fixed differently, then
size of BDD can be additionally decreased. The new initial pre-order of the
variables can be found by means of the spectral analysis of the function f .

2 The first order Walsh coefficients calculation

The Boolean function f(x1, x2, . . . , xn) given by the binary truth-vector Yf =
[y0, y1, . . . , y2n−1]T , can be transformed from the Boolean domain {0, 1} into
the spectral domain by a linear transformation H · Yf = S, where H is
a 2n × 2n transform matrix, and S = [s0, s1, . . . , s2n−1]T is the vector of
spectral coefficients called the spectrum of f . In particular, we get the Walsh-
Hadamard transform when H is the Walsh matrix defined as:

W (n) =
n⊗

i=1

W (i), W (1) =

[
1 1
1 −1

]
(1)

where: W (i) is the basic Walsh matrix and ⊗ denotes the Kronecker prod-
uct [8]. Hence, the forward and inverse Walsh transform can be described as
follows:

S(n) = W (n) · Y (n), Y (n) = 2−nW (n) · S(n) (2)

Taking into account properties of the Walsh transform (1), (2), an n-variable
Boolean function f can be described by means of the spectral coefficients:

f(x1, . . . , xn) =
1

2n+1

[
2n − s0 −

2n−1∑
a=1

sa(−1)x
a1
1 ⊕x

a2
2 ⊕...⊕xan

n

]
(3)

where: a1, a2, . . . an ∈ {0, 1} – the binary representation of the decimal num-
ber a and xai=0 = 0, and xai=1 = x. From (3) it can be observed, that
the spectral coefficient can be described by indexes which are correlated
with variable of an function f . For example, s1 ↔ x1, s12 ↔ x1 ⊕ x2,
s123 ↔ x1 ⊕ x2 ⊕ x3, s12...n ↔ x1 ⊕ x2 ⊕ . . . ⊕ xn. The spectral coefficients,
where index is describe by one number, are called coefficients of the first order
coefficients, when index has two numbers – are the second order, and so on for
the third, forth, . . ., nth order. The first order spectral coefficients of a given
Boolean function f can be calculated immediately from some rows of the
matrix H [8]. Unfortunately, such calculation can be used for fully defined
functions. From this reason the values of the first order spectral coefficients

c© IEICE 2006
DOI: 10.1587/elex.3.51
Received January 04, 2006
Accepted January 16, 2006
Published February 10, 2006

53

IEICE Electronics Express, Vol.3, No.3, 51–57

have been introduced on the basis of method described in [1]. Such method
is very convenient for large Boolean functions because instead conventional
method of spectra calculation, where large 2n × 2n the Walsh matrix should
be generated, cubes representation can be used. The mentioned method can
be modified and suitably adopted, in such case the first order coefficients can
be calculated with the aid of the algorithm:

The first order spectral coefficients generation algorithm.
Input : the ∗.pla file with ON/DC cubes of an n-variable Boolean function f

Output : The table S includes the first order Walsh coefficients S[1], S[2], . . . ,
S[n]

for (i=1; i<=n; i++) S[i]=0;

for (j=1; j<=number of cubes; j++)

{

step I Calculation of the number of places, where occurs don’t care symbol
(–)

p=0;

for (i=1; i<=n; i++)

if (the ith bit in current cube = ’-’) p++;

step II Calculation of the first order spectral coefficient

for (i=1; i<=n; i++)

{
if (the current cube is ON - type)

{ vi=2p+1;

if (the ith bit in the current cube = 0) S[i]=S[i]-vi;

if (the ith bit in the current cube = 1) S[i]=S[i]+ vi; }
else

/∗ for the DC- type cube ∗/

{ vi=2p;

if (the ith bit in the current cube = 0) S[i]=S[i]-vi;

if (the ith bit in the current cube = 1) S[i]=S[i]+ vi; }}
}

It can be checked that the presented algorithm has the time complexity
O(cn), where c is a number of disjoint cubes describe the Boolean function
f .

3 A new method of the BDD size reduction

Optimization of BDDs can be performed by ordering of variables because dif-
ferent orderings produce different BDDs. They are many strategies of variable
ordering: local computability, level heuristics, fan-in heuristics, etc. [9]. It

c© IEICE 2006
DOI: 10.1587/elex.3.51
Received January 04, 2006
Accepted January 16, 2006
Published February 10, 2006

54

IEICE Electronics Express, Vol.3, No.3, 51–57

can be noticed that the freely available CUDD and BuDDy packages [3, 7]
exploit sifting or linear sifting algorithms [4] as the method of the BDD size
reduction. The ordering can be treated as suitable permutation of variables.
Permutation of variables in f , corresponds to the elements permutation in
the truth-vector Yf . Similar permutation of Yf can be obtained by use of
special permutation matrices [8], but its construction seems to be difficult.
Moreover such matrices are large for large Boolean functions. In this paper
the new spectral initial variable ordering has been proposed. The modifica-
tion can be treated as the method, where the influence of variables on control
of function is determined, hence such variables should be at higher position
in the BDD.

In the first stage, the set of the first order spectral coefficients {s1, s2, . . . ,

sn} for a given function f is determined on the basis of above presented
algorithm.

• In the next step, the obtained values in different manner can be ordered:

Table I. The first order spectral coefficients pre-ordering
principles

Type of order Symbol Example
The descending order > s1 > . . . > sn−1 > sn

The ascending order < s1 < . . . < sn−1 < sn

The absolute descending order |>| |s1| > . . . > |sn−1| > |sn|
The absolute ascending order |<| |s1| < . . . < |sn−1| < |sn|

• In the another stage the values of the coefficients are ordered according
to Table I. Because each the spectral coefficient si, i = 1, 2, . . . , n

is connected with the variable xi [1, 5, 8] – order of all variables is
unambiguously also appointed.

4 Proposed approach and investigation results

Because sifting procedure is commonly used as efficient method of the BDD
size reduction, experiments with sifting and new technique implemented to-
gether with sifting algorithm have been conducted. In this paper the linear
sifting procedure is used because it gives better results than sifting method [4,
9]. The new initial input variables order was implemented inside of the appro-
priate ∗.pla-type file. Each input file has the Espresso format. For example:

c© IEICE 2006
DOI: 10.1587/elex.3.51
Received January 04, 2006
Accepted January 16, 2006
Published February 10, 2006

55

IEICE Electronics Express, Vol.3, No.3, 51–57

Input file: Reordered file: Comment:
.i 2 .i 2 For the truth-vector Yf = [0, 0, 1, 1] the first

spectral coeff. are s1 = 0 and s2 = −2 (s1 >

s2). Hence, input variables there are in de-
scending order. If assume another order, for
example s1 < s2, then the new order of the
variables in input file is stated. The new file in
the CUDD package will be used and new order
is stored in computer memory.

.o 1 .o 1

00 0 00 0

01 0 10 0

10 1 01 1

11 1 11 1

.e .e

From this reason, suitable variable pre-ordering inside file ∗.pla can be
treated as initial order of linear sifting algorithm. Hence, original ordering
algorithm does not have to be changed. The calculations by means of the
CUDD have been evaluated. The size reduction of the BDDs and the cal-
culation time have been compared. For all type of orders, the appropriate
BDD has been constructed and its size has been determined. The method by
means of 300 randomly generated single output, full defined Boolean func-
tions has been tested. For different orders the minimal BDD size has been
chosen: the pre-ordering method 1: min{>, <, |>|, |<|}, the pre-ordering
method 2: min{>, <}, the pre-ordering method 3: min{|>|, |<|}, the pre-
ordering method 4: random{>, <, |>|, |<|}, where notation min (random)
indicates the minimal number of BDD nodes from the appropriate set of
orders. The results of investigations for each method present Fig. 1, where
time as well as the BDDs size reduction has been performed. The efficiency
of the method on a percentage basis has been expressed. From Fig. 1 follows,
that the proposed method gives better size and time results than the CUDD
method. The results in most cases are better even random variables order-
ing is chosen. Such result follows from assumption, that in sifting algorithm
instead n! brute-force exhaustive searches, only n2 variable ordering is ana-
lyzed, hence only sub-optimal order will be found. Sifting algorithm starts
from lexicographical order of variables (x1, x2, . . . , xn), but on the basis of
spectral coefficients analysis, better initial order is often proposed (for exam-

(a) (b)

Fig. 1. The CUDD linear sifting (without pre-ordering)
with relation to CUDD with different pre-ordered
input files: (a) reduction of the time calculation
and (b) the BDD size reduction

c© IEICE 2006
DOI: 10.1587/elex.3.51
Received January 04, 2006
Accepted January 16, 2006
Published February 10, 2006

56

IEICE Electronics Express, Vol.3, No.3, 51–57

ple xn, x1, . . . x2). It can be noticed that CUDD package has a conjectural in-
ternal limitation (n < 20), for full defined, single output functions. Therefore
additionally, some representative weakly defined, multi-output benchmarks
have also been tested, what presents Table II.

Table II. Effect of the variables ordering: The CUDD with
linear sifting (without pre-ordering), and with ad-
ditional pre-ordering: the number of the nodes
in BDD and calculation time (nodes/time in sec-
onds.)

Circuit #i #o CUDD/s >/s |>|/s </s |<|/s min/tot.s
9sym 9 1 25/.02 25/.02 25/.02 25/.02 25/.00 25/.06
co14 14 1 27/.02 27/.02 27/.02 27/.00 27/.00 27/.04
dist 8 5 121/.02 121/.02 121/.02 121/.02 121/.02 121/.08
ex1010 10 10 1060/.14 1058/.08 1054/.08 1056/.08 1050/.08 1050/.32
ex5 8 63 242/.05 186/.02 205/.03 204/.03 181/.02 181/.01
majority 5 1 8/.02 8/.02 8/.02 8/.02 9/.00 8/.06
mlp4 8 8 135/.05 145/.05 151/.05 151/.05 145/.05 145/.20
sqar5 5 8 35/.02 33/.02 34/.00 33/.02 33/.02 33/.06
sym10 10 1 31/.03 31/.02 31/.02 31/.02 31/.02 31/.08

Total 1684/.37 1634/.27 1656/.26 1656/.26 1622/.21 1621/.91

This type of investigations was performed similarly as previously, where
first adequate variables order in benchmarks file was changed, and in next
stage CUDD procedure is activated. Taking into account values from Table II
can be observed that the new initial useful pre-ordering technique in the ∗.pla
file, together with linear sifting algorithm gives better results with relation to
singly used linear sifting algorithm. Should be noticed that only for bench-
mark mlp4.pla results of the BDD optimization were worse than the CUDD
approach. In another cases even choice any pre-ordered method gives better
results to compared with method where pre-ordering was not used. Can be
observed that preliminary initial input file reorder before starts of CUDD,
gives better results than CUDD without input file rebuilding. The symbols
in columns 4–9 have the next meaning: number of BDD nodes/time of cal-
culations in seconds. All experiments with Athlon XP 1700+ (1466MHz)
processor and 512Mbytes main memory were performed.

5 Conclusion

In this paper the auxiliary, effective method of the BDDs ordering has been
introduced. The proposed method, based on the first spectral coefficients
analysis, can be used in the BDD optimization. The initial pre-ordering
by input file conversion is achievement. The described approach gives often
better results (time calculations, and the BDD size reduction) than method
where only linear sifting algorithm is applied.

c© IEICE 2006
DOI: 10.1587/elex.3.51
Received January 04, 2006
Accepted January 16, 2006
Published February 10, 2006

57

