
IEICE Electronics Express, Vol.4, No.14, 448–454

Operation scheduling for
the synthesis of false loop
free circuits

Shih-Hsu Huanga) and Chun-Hua Cheng
Department of Electronic Engineering,

Chung Yuan Christian University, Chung Li, Taiwan, R.O.C.

a) shhuang@cycu.edu.tw

Abstract: If resource constraints are specified, the false loop free cir-
cuit must be built during the scheduling phase. Although the previous
approach guarantees to have a false loop free circuit mapping, it does
not attempt to minimize the number of control steps. In this paper,
we present an effective approach to find a scheduled code, which not
only guarantees to have a false loop free circuit mapping but also to
minimize the number of control steps. Experimental results show that
our approach achieves good results in terms of the number of control
steps.
Keywords: electronic design automation, high-level synthesis
Classification: Science and engineering for electronics

References

[1] L. Stok, “False Loops through Resource Sharing,” in the Proc. of Int.
Conf. on Computer-Aided Design, pp. 345–348, 1992.

[2] S. H. Huang, T. Y. Liu, Y. C. Hsu, and Y. J. Oyang, “Synthesis of False
Loop Free Circuits,” in the Proc. of Asia and South Pacific Design Au-
tomation Conf., pp. 55–60, 1995.

[3] S. Davidson, D. Landskov, B. D. Shriver, and P. W. Mallet, “Some Exper-
iments in Local Microcode Compaction for Horizontal Machines,” IEEE
Trans. Comput., vol. C-30, no. 7, pp. 460–477, 1981.

[4] P. Faraboschi, J. A. Fisher, and C. Young, “Instruction Scheduling for
Instruction Level Parallel Processors,” Proc. of the IEEE, vol. 89, no. 11,
pp. 1638–1659, 2001.

[5] C. Chen and M. Sarrafzadeh, “Power-Manageable Scheduling Technique
for Control Dominated High-Level Synthesis,” Proc. of IEEE Design, Au-
tomation, and Test in Europe Conference and Exhibition, pp. 1016–1020,
2002.

1 Introduction

A false path of a combinational circuit is defined as a path that will never
be traversed under any combination of input values. A false loop is a special
case of false path, where the start point and the end point of the false path
are the same. False loops mainly occur in design style where the constraints

c© IEICE 2007
DOI: 10.1587/elex.4.448
Received May 01, 2007
Accepted June 25, 2007
Published July 25, 2007

448



IEICE Electronics Express, Vol.4, No.14, 448–454

allow chaining of many data path operations, especially in the designs that
consist of many control steps or consist of many parts executed under exclu-
sive conditions. Because most timing analyzers and delay calculators cannot
handle false loops, it is therefore desirable to generate a circuit that contains
no false loops.

The HIS system [1] is the first behavior synthesis system to tackle the
false loop problem. It solves the problem during the allocation phase [1].
But it has a drawback that in many cases a false loop free circuit cannot
be built under given resource constraints. Additional resources have to be
added in order to build a false loop free circuit. Different from HIS sys-
tem, Huang et al. [2] propose an approach to solve the problem during the
scheduling phase. A resource allocation graph is defined to model the circuit
configuration, such as operation chaining and resource sharing, at the higher
abstraction. The proposed approach is to incrementally construct an acyclic
resource allocation graph, which corresponds to a false loop free circuit map-
ping under the specified resource constraints. As a result, a scheduled code,
which guarantees to have a false loop free circuit mapping under the given
resource constraints, is obtained.

Although [2] solves the false loop problem, the approach is a greedy al-
gorithm itself. It is obvious that different directed resource allocation graphs
have different circuit mappings. Since the acyclic resource allocation graph
in [2] is constructed greedily, in many cases the obtained scheduled code still
can be further improved. The improvements can be evaluated in terms of
the number of control steps. Moreover, the improvements cannot be achieved
during the allocation phase, since the scheduled code is already fixed.

In this paper, we present an effective approach to find a scheduled code,
which not only guarantees to have a false loop free circuit mapping under the
given resource constraints, but also to minimize the number of control steps.
Our approach can be easily incorporated into any of existing list scheduling
like algorithms [3, 4, 5].

2 PRELIMINARIES

To detect false loops during the scheduling process, a resource allocation
graph is defined to model the circuit configuration. Let FU(o) denote the
functional unit to which operation o is assigned.
DEFINITION 1: A resource allocation graph G(V,E) is defined as a di-
rected graph, where: (1) each vertex in V represents a functional unit defined
in the resource constraints; and (2) a directed edge e connecting from vertex
FU(oi) to vertex FU(oj), if operation oi and operation oj are chained in the
same control step.
The following theorem states that we can detect false loops on a resource
allocation graph.
THEOREM 1: There is a false loop in the final hardware, if and only if
there is a cycle in the corresponding resource allocation graph.
Proof: The proof is given in [2]. Q.E.D.

c© IEICE 2007
DOI: 10.1587/elex.4.448
Received May 01, 2007
Accepted June 25, 2007
Published July 25, 2007

449



IEICE Electronics Express, Vol.4, No.14, 448–454

Based on Theorem 1, an approach that guarantees to generate a false loop
free schedule is proposed in [2]. The core algorithm is a list scheduling like
algorithm. The approach is to maintain an acyclic resource allocation graph
during scheduling. Initially, the edge set in the resource allocation graph is
empty. Whenever two operations oi and oj are chained in the same control
step, a directed edge from FU(oi) to FU(oj) forms in the resource allocation
graph. Note that the directed edges in the acyclic resource allocation graph
define a topological ordering of the functional units. At each control step,
the functional units are chosen in the sequence of their topological ordering.
Although this approach ensures to have a false loop free schedule, it does not
attempt to minimize the number of control steps. Therefore, this approach
is called greedy false loop free scheduling.

3 THE PROPOSED APPROACH

Because the bindings of functional units are limited by their topological order-
ing, the greedy false loop free scheduling may introduce extra control steps.
To minimize the number of control steps, we propose the concept of tentative
edge. Then, the greedy false loop free scheduling is iteratively invoked with
the tentative edges pre-defined in the resource allocation graph.

A. The Motivation
Let’s use the data flow graph in Figure 1 as an example. Suppose that the
resource constraints are two adders (i.e., add1 and add2) and one subtractor
(i.e., sub1). By applying list scheduling, the scheduled code is obtained as
shown in Figure 1 (a). Operations 1, 2, and 3 are scheduled in control step 1,
and operations 4, 5, and 6 are scheduled in control step 2. We can easily prove
that the scheduled code is not a false loop free schedule. Since operation 3
uses the outputs of operations 1 and 2 at control step 1, we have directed edges
FU(1) → FU(3) and FU(2) → FU(3) in the resource allocation graph. Note
that FU(3) is the subtractor sub1. Since operations 1 and 2 are scheduled
at the same control step, they must be assigned to different adders. Hence,
we have directed edges add1 → sub1 and add2 → sub1. However, because
operations 4 and 6 are chained at control step 2, a directed edge from FU(4)
(i.e., sub1) to FU(6) (i.e., the adder executes operation 6) must be added
to the resource allocation graph. Consequently, there is a cycle (i.e., false
loop) between sub1 and FU(6). In other words, there is no binding, which
is false loop free, for this schedule. Figure 1 (b) is a corresponding resource
allocation graph for the scheduled code, where FU(1) and FU(5) are add1,
FU(2) and FU(6) are add2, and FU(3) and FU(4) are sub1. We can find
that a cycle between add2 and sub1 forms in this resource allocation graph.

The objective of greedy false loop free scheduling [2] is to find a schedule
in which the corresponding resource allocation graph is acyclic. Let’s use
the data flow graph in Figure 1 (a) as an example. The scheduling starts
with control step 1. Operations 1, 2, and 3 are assigned to add1, add2, and
sub1, respectively. Edges add1 → sub1 and add2 → sub1 are added into the

c© IEICE 2007
DOI: 10.1587/elex.4.448
Received May 01, 2007
Accepted June 25, 2007
Published July 25, 2007

450



IEICE Electronics Express, Vol.4, No.14, 448–454

resource allocation graph. Next, we move to control step 2. Operations 4 and
5 are assigned to sub1 and add1, respectively. Then, we move to operation
6. We cannot assign operation 6 to the functional unit add2, because a cycle
between sub1 and add2 will be formed. There is no binding available for
operation 6. Therefore, we cannot schedule operation 6 in this control step,
even though add2 has not been sealed. After we complete the task of false
loop free scheduling, we obtain the schedule code as shown in Figure 1 (c).
In order to avoid false loops, operation 6 is scheduled at control step 3. The
resource allocation graph is shown in Figure 1 (d). If compared with the
scheduled code without false loop avoidance as shown in Figure 1 (a), the
false loop free scheduling introduces an extra control step.

Fig. 1. An example.

B. Tentative Edges
In this paper, we propose the concept of tentative edge for further optimiza-
tion.
DEFINITION 2: During the process of greedy false loop free scheduling, a
directed edge is not allowed to add into the resource allocation graph if and
only if it will form a cycle in the resource allocation graph. We define such a
directed edge is a tentative edge, which is forbidden to add into the resource
allocation graph due to false loop avoidance.
Let’s use Figure 1 (c) and Figure 1 (d) to illustrate the definition. There is
no binding for operation 6 at control step 2, because the edge sub1 → add2
is not allowed. Otherwise, a cycle will form in the resource allocation graph.
Note that the dependency of operations 4 and 6 belongs to the chaining type
sub1 → add2. If the directed edge sub1 → add2 is allowed, operations 4 and
6 can be chained together at control step 2. Therefore, we say that directed
edge sub1 → add2 is a tentative edge.

C. The Algorithm
Our basic idea is to perform the greedy false loop free scheduling again on
the same control/data flow graph by using the tentative edge as a design
constraint. Under the prerequisite of the tentative edge, the greedy false
loop free scheduling constructs a new resource allocation graph and hence
obtains a new scheduled code. The new scheduled code will be accepted

c© IEICE 2007
DOI: 10.1587/elex.4.448
Received May 01, 2007
Accepted June 25, 2007
Published July 25, 2007

451



IEICE Electronics Express, Vol.4, No.14, 448–454

if the number of control steps is reduced. The iteration repeats until the
number of control steps cannot be further reduced or no new tentative edge
appears.

Let’s use Figure 1 for illustration. According to the experience of greedy
false loop free scheduling as shown in Figure 1 (c), we find that the directed
edge sub1 → add2 is a tentative edge. Therefore, by using the tentative edge
as the prerequisite, we perform greedy false loop free scheduling one more
time. Before scheduling, the tentative edge sub1 → add2 is added into the
resource allocation graph. As a result, we have an initial resource allocation
graph as shown in Figure 2 (a). Based on this resource allocation graph, the
scheduler starts from control step 1. Firstly, operation 1 is scheduled and
functional unit add1 is sealed. Then, operation 2 is scheduled and functional
unit add2 is sealed. Although operation 3 is ready, it cannot be chained
with operation 2 because of the tentative edge sub1 → add2. Otherwise, a
cycle between sub1 and add2 will form. Therefore, operation 4 is scheduled
and functional unit sub1 is sealed. Next, the scheduler moves to control
step 2. Operation 3 is scheduled and hence functional unit sub1 is sealed.
Then, operation 5 is scheduled and chained with operation 4. In order to
save the number of interconnections, the directed edge sub1 → add2 is used.
Therefore, functional unit add2 is sealed. Finally, operation 6 is scheduled
and chained with operation 4. Functional unit add1 is sealed. A new directed
edge sub1 → add1 is added into the resource allocation graph. The final
scheduled code, which only takes two control steps, is shown in Figure 2 (b).
The corresponding resource allocation graph, which is false loop free, is shown
in Figure 2 (c).

Fig. 2. The proposed algorithm.

Figure 2 (d) shows the pseudo code of the proposed algorithm. The no-
tation no denotes the number of repeat-until iterations executed. Since a

c© IEICE 2007
DOI: 10.1587/elex.4.448
Received May 01, 2007
Accepted June 25, 2007
Published July 25, 2007

452



IEICE Electronics Express, Vol.4, No.14, 448–454

tentative edge is added into the set of pre-defined edges per repeat-until it-
eration, the notation no also means the number of pre-defined edges. The
notation Sno denotes the best schedule currently in the no iteration. The no-
tation PEno denotes the pre-defined edges for the Sno. The notation TE is a
function, which returns the set of tentative edges of a false loop free schedule.
The notation cost is a function, which returns the cost of a schedule code.
The notation BestS is the best schedule up to now. The notation BestPE
denotes the set of pre-defined edges for the schedule BestS. The details of the
algorithm are elaborated as the below.

During the scheduling of S0, we may have some tentative edges. Each ten-
tative edge e in TE (S0) is sequentially evaluated. Based on the evaluations,
the best schedule S1 is chosen among the false loop free schedules obtained
in the for-loop iterations. The PE 1 is the tentative edge which results in S1.
If the cost of S1 is fewer than the cost of S0, the repeat-until iteration is
executed one more time. Then, the tentative edges in TE (S1) are evaluated
sequentially. The repeat-until iteration proceeds until the scheduled code
cannot be further improved.

Let’s use the data flow graph in Figure 1 (a) as an example. Firstly, we
perform greedy false loop free scheduling without any pre-defined edge. Note
that PE 0 is Ø. The S0 is obtained as shown in Figure 1 (c). The set TE (S0)
is { sub1 → add2 }. Therefore, we try to use the tentative edge sub1 → add2
as a pre-defined edge. The TempPE becomes {sub1→add2}. As a result, S1
are obtained as the scheduled code as shown in Figure 2 (b). The cost of S1
is fewer than the cost of S0 in terms of the number of control steps. Because
the set TE (S1) is Ø, we cannot further improve the false loop free schedule
S1. Therefore, the scheduled code, as shown in Figure 2 (b), is returned.

4 Experimental Results

Five benchmark circuits are used to test the effectiveness of our approach.
Benchmark circuits Ellip, LPC, QRS, and Filter are adopted from [2]. Bench-
mark circuit Example denote the example used in this paper. Table I tab-
ulates the experimental results with the resource constraints on the number
of adders (#adds), the number of subtracters (#subs), the number of ALUs
(#alus), and the number of multipliers (#muls). The column Without gives
the scheduling result without false loop avoidance, including the number of
control steps (#steps), and if it contains a false loop which cannot be elimi-
nated under the resource constraints or not (floop). The column [2] denotes
the greedy false loop free scheduling [2]. The column Ours denotes our pro-
posed approach.

From Table I, we find that: benchmark circuits Ellip, LPC, Filter, and
Example contain false loops if false loop avoidance is not considered. If only
using greedy false loop free scheduling [2], benchmark circuits LPC, Filter,
and Example need an extra control step. However, by applying our proposed
approach, false loop free circuit mapping can be built without introducing
an extra control step.

c© IEICE 2007
DOI: 10.1587/elex.4.448
Received May 01, 2007
Accepted June 25, 2007
Published July 25, 2007

453



IEICE Electronics Express, Vol.4, No.14, 448–454

Table I. Experimental results on benchmark circuits.

Circuit Resource constraints Without [2] Ours
#adds #subs #alus #muls #steps floop #steps #steps

Ellip 3 0 0 1 8 yes 8 8
LPC 0 0 2 2 11 yes 12 11
QRS 1 1 0 0 37 no 37 37
Filter 3 0 0 1 11 yes 12 11

Example 2 1 0 0 2 yes 3 2

5 Conclusions

In this paper, we present an effective approach to find a scheduled code,
which guarantees to have a false loop free circuit mapping under the given
resource constraints, with the objective to minimize the number of control
steps. Benchmark data shows that false loop free circuits can be built without
introducing extra control steps.

Acknowledgments

This work was supported in part by the National Science Council of Taiwan,
R.O.C., under grant number NSC 93-2220-E-033-001.

c© IEICE 2007
DOI: 10.1587/elex.4.448
Received May 01, 2007
Accepted June 25, 2007
Published July 25, 2007

454


