
IEICE Electronics Express, Vol.4, No.23, 755–761

HW/SW architecture for
soft-error cancellation in
real-time operating system

M. H. Neishaburia), M. R. Kakoee, M. Daneshtalab, and S. Safari
School of Electrical and Computer Engineering, University of Tehran,

North Kargar Ave., Tehran 14395–515, Tehran, Iran

a) mhnisha@cad.ece.ut.ac.ir

Abstract: Today, real-time applications with critical constraints
are usually run in an environment with Real-Time Operating System
(RTOS). Services provided by RTOSs are severely exposed to faults
which affect both functional and timing of the tasks running on the
RTOS based system. In this paper, we introduce a new architecture
for RTOS provides more robust services in term of Soft Errors (SEs).
We evaluate and analyze robustness of the services due to SEs in two ar-
chitectures, i.e. SW-RTOS and HW/SW-RTOS. Experimental results
show more robust services were provided by HW/SW-RTOS versus
purely SW-RTOS regarding SEs.
Keywords: Real-Time Operating Systems (RTOS), Soft Error
Classification: Science and engineering for electronics

References

[1] Ph. Shirvani, R. Saxena, and E. J. McCluskey, “Software Implemented
EDAC Protection against SEUs,” IEEE Trans. Reliab., vol. 49, no. 3,
Sept. 2000.

[2] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Design Optimization of Time-
and Cost-Constrained Fault-Tolerant Distributed Embedded Systems,”
DATE, Munich, Germany, pp. 864–869, 7–11 March 2005.

[3] S. Ghosh, R. Melhem, D. Mossé, and J. Sarma, “Fault Tolerant Rate
Monotonic Scheduling,” J. Real Time Systems, vol. 15, no. 2, Sept. 1998.

[4] N. Ignat, B. Nicolescu, Y. Savaria, and G. Nicolescu, “Soft-Error Classi-
fication and Impact Analysis on Real-Time Operating Systems,” DATE
2006.

[5] S. Chandra, F. Regazzoni, and M. Lajolo, “Hardware/Software Partition-
ing of Operating Systems: a Behavioral Synthesis Approach,” GLSVLSI,
pp. 324–329, 2006.

[6] V. J. Mooney and D. M. Blough, “A Hardware-Software Real-Time Op-
erating System Framework for SoCs,” IEEE Des. Test. Comput., vol. 19,
no. 6, pp. 44–51, 2002.

[7] Morton and W. M. Loucks, “A HW/SW Kernel for SoC Designs,” in
Proceedings of the 2004 ACM Symposium on Applied computing, New
York, USA, pp. 869–875, 2004.

[8] M. H. Neishaburi, M. R. Kakoee, M. Daneshtalab, S. Safari, and Z.
Navabi, “A HW/SW Architecture to Reduce the Effects of Soft-Errorsc© IEICE 2007

DOI: 10.1587/elex.4.755
Received September 14, 2007
Accepted October 29, 2007
Published December 10, 2007

755



IEICE Electronics Express, Vol.4, No.23, 755–761

in Real-Time Operating System Services,” IEEE-DDECS, 11–13 April
2007.

[9] B. Nicolescu, N. Ignat, Y. Savaria, and G. Nicolescu, “Sensitivity of Real-
Time Operating Systems to Transient Faults: A Case Study for MicroC
Kernel,” IEEE Radiation and its Effects on Components and Systems,
Cap de Agde, France, 19–23 Sept. 2005.

[10] Motorola HC12 CPU Awareness and True-Time Simulation, Metrowerks
Corp., 2004.

[11] B. Saglam, J. Lee, and V. J. Mooney, “A System-on-a-Chip Lock Cache
with Task Preemption Support,” CASES’01, 16–17 Nov. 2001.

1 Introduction

The Real-Time Operating System (RTOS) provides an abstraction layer to
hide the processor hardware details from software point of view. To do so,
the RTOS kernel should provide four main types of basic services to appli-
cation programs, including Time Management (Timer), Dynamic Memory
Allocation, Task Management and Inter-Process Communication (IPC ).

Task Management provides several services such as task creation, task
scheduling and task priority assignment. Using these services, software de-
velopers are able to partition the design as a number of separate parts of
software, called task, in such a pertinent way that each task handles a distinct
topic, a specific goal, and maybe has its own real-time deadline. The software
developers should be familiar with the Inter-Process (Inter-Task) Communi-
cation and Synchronization RTOS services to pass the information between
two tasks safely. This leads to the coordination of the tasks to cooperate
with each other. Due to the stringent timing requirements of most Real-
Time applications, some basic timer services, i.e., task delays and time-out
commands should also be provided by RTOS kernels. Additionally, Dynamic
Memory Allocation allows the allocation of a block of RAM for temporary
usage in application software. These blocks of memory can transfer a large
amount of data between two tasks. Same kernel services are also provided
by non-RTOSs. The main difference between general operating systems and
RTOSs is the need for deterministic timing behavior in the RTOSs.

There are several innovations introduced by system designers to deal with
the problems of Soft-Errors (SEs) in RTOSs in the literature [1, 2, 3, 4]. The
method presented in [1] includes an additional application checks other ap-
plications in their workspace memory. In [2] the idea of replication of the
systems is proposed, and finally in [3] the researchers were concerned with
designing a robust scheduling algorithm. As shown in [4], a SE may cause a
failure in the multi-tasking process of an RTOS. The faults may be propa-
gated to the application level and thus defeat the entire fault-tolerant mech-
anisms and this can lead to endangering valuable assets and life. Therefore,
the necessity of designing a robust fault tolerant RTOS can be concluded.

In [5], the authors suggested that by HW/SW partitioning of OSs and
moving some of the RTOS functionalities, i.e. task synchronization and sched-

c© IEICE 2007
DOI: 10.1587/elex.4.755
Received September 14, 2007
Accepted October 29, 2007
Published December 10, 2007

756



IEICE Electronics Express, Vol.4, No.23, 755–761

uling to HW, faster executions may be obtained. They claimed that this
improvement has come with the cost of only 13K gates. Although many
researches have been worked on this topic [6, 7], there is still no commercial
RTOS takes advantages of this feature.

The main contributions of this paper are:

1. We analyze and evaluate SE effects in services provided by purely SW-
RTOS and HW/SW-RTOS.

2. We propose an effective RTOS architecture provides more effective and
robust services related to soft-errors.

2 Experimental Framework

This section presents our approach for designing a HW/SW-RTOS as well as
fault injection in the proposed model.

2.1 SW-RTOS
In our framework, we use eCos (embedded Configurable OS) as purely SW-
RTOS. eCos is an open source, royalty-free and real-time operating system
intended for embedded systems and applications. eCos was designed for
devices with either memory footprints in tens to hundreds of kilobytes, or
real-time requirements. It can be used on systems that do not have enough
RAM to support embedded Linux, which currently requires a minimum of
about 2MB of RAM, not including application and service requirements.

2.2 HW/SW-RTOS
Many researchers have investigated various approaches to provide predictable
and deterministic response time for RTOS at an affordable cost. One ap-
proach is to move RTOS functionality from software to dedicated hardware
part; because hardware implementation of an algorithm is more predictable
than software implementation of it; Moreover, it can also increase system
performance due to the CPU load reduction.

The idea of a HW-OS that uses hardware implementation of Schedul-
ing and Inter-Process communication has been proposed in [6]. In our pro-
posed HW/SW-RTOS implementation, we replaced the POSIX support of
eCos operating system with dedicated data exchanging mechanisms. The
scheduler is also replaced with a dedicated hardware module. Inter-Process
communications have been done by semaphores or Mutex. In our proposed
HW/SW-RTOS, we directly update memory locations for implementation of
semaphores and Mutex. Inter-Process communications have been done by
generating standard bus transactions; consequently, they are carried out in
HW/SW-RTOS more efficiently than SW-RTOS implementation.

Figure 1 shows the comparison between standard SW-RTOS (top) and
our proposed HW/SW-RTOS architecture (bottom). As shown in Figure 1,
in the proposed HW/SW-RTOS, the operating system is composed of five
units:

c© IEICE 2007
DOI: 10.1587/elex.4.755
Received September 14, 2007
Accepted October 29, 2007
Published December 10, 2007

757



IEICE Electronics Express, Vol.4, No.23, 755–761

Fig. 1. SW-RTOS versus HW/SW-RTOS.

• Scheduling unit (Implemented in HW)

• Data Exchanger unit (Implemented in HW)

• System on Chip Lock Cache unit (Implemented in HW)

• Context switching unit (Implemented in SW)

2.2.1 Scheduling Unit
The scheduling unit finds out the next software task ID. In our proposed
HW/SW-RTOS, the hardware implemented Weighted-Round-Robin (WRR)
is used. At each scheduling cycle the task pointer increments and the Data
Exchanger unit returns the condition of task (executable or blocking). If an
executable task is found, the CPU will be informed by issuing a hardware
interrupt. WRR unit selects the not-recently-executed task and avoids the
starvation problem if there are several executable tasks.

2.2.2 Data Exchanger Unit
Data Exchanger manages the data transfer between tasks. If a task provides
(needs) some data for (from) another task, it informs Data Exchanger unit
to handle its case.

2.2.3 System on Chip Lock Cache (SoCLC) Unit
The SoCLC used in our framework to handle mutual exclusions is based
on [11]. As shown in Figure 2 (a), In our method, if process p1 executes
wait(L1) instruction, it will wait until L1 is activated. To do so, p1 will be
added to the list of waited processes for L1. As a result of the execution
of this instruction, L′

1 and L′′
1 will be blocked until another process executes

signal(L1) instruction. However, We used Triple Module Redundancy (TMR)
to keep three dedicated lists for each lock variable to mitigate the SE effects.

2.2.4 Context Switching
Typical context switching consists of three steps i.e. pushing all CPU registers
to the current task stack, scheduling the next task to be run, popping all
CPU registers to the next task. The steps 1 and 3 are implemented in

c© IEICE 2007
DOI: 10.1587/elex.4.755
Received September 14, 2007
Accepted October 29, 2007
Published December 10, 2007

758



IEICE Electronics Express, Vol.4, No.23, 755–761

Fig. 2. (a) System on chip Lock Cache unit (SoCLC);
(b) Fault Injection Environment.

software because all CPU registers must be stored into or restored from the
memory; whereas, step 2 can be carried out in hardware by specifying the
next executable task to the CPU in scheduling unit.

3 Fault Injection Environment (FIE)

A fault injection technique for SW-RTOS was proposed in [9]. However,
to the best of our knowledge, there is no fault injection mechanism in the
literature, which supports the fault-injection in HW/SW-RTOS except the
work presented in [8]. In our method a fault can be considered as a single bit-
flip in the CPU registers. Programming Language Interface (PLI) is used to
access to the internal data structures of the Verilog code (e.g. CPU registers)
when the application is running. As shown in Figure 2 (b), our fault injection
environment consists of two main parts: Fault Generator decides when and
where the fault will be injected and Fault Tracer traces the services that
are currently executing in RTOS and informs Fault Generator about active
services. Eventually, while the main services of the SW-RTOS (eCos kernel)
and HW/SW-RTOS kernel are active FIE injects faults in CPU registers.

4 Experimental Results

This section provides the experimental results to show the SE effects in real-
time applications. The SE effects on real-time kernel’s services are classified
as follows:

• Safe or Masked faults: no visible effect on system functionality.

• Application failure: represents a class of faults with some effects on
the application level, e.g. incorrect output results, real time problems
and process hanging.

• Application Exception: one or more applications trigger some ex-
ception routines, e.g. illegal instruction and division by zero.

• System crash — the system halts.
c© IEICE 2007

DOI: 10.1587/elex.4.755
Received September 14, 2007
Accepted October 29, 2007
Published December 10, 2007

759



IEICE Electronics Express, Vol.4, No.23, 755–761

Fig. 3. (a) SE Effects in SW-RTOS; (b) SE Effects
in HW/SW-RTOS; (c) Robustness of HW/SW-
RTOS versus SW-RTOS in terms of SEs;
(d) Hardware overhead of different HW/SW-
RTOS units.

To evaluate SW-RTOS and our proposed HW/SW-RTOS assessing the relia-
bility and different vulnerability factors for each of OS services, we performed
several fault injection rules:

• During execution of SW-RTOS and our proposed HW/SW-RTOS ser-
vices, faults were randomly generated by Fault Injection module and
injected into the CPU registers.

• Fault Injection module will be activated by a signal coming from
HW/SW-RTOS using a mechanism of data-exchanging while services
are in progress.

The SE effect according to the different services which are provided by SW-
RTOS and HW/SW-RTOS are illustrated in Figure 3 (a) and 3 (b). The (X)
axes in these figures illustrate the classes of fault consequences, while the
value axis (Y) shows the corresponding occurrences rate. Different services
related to SW-RTOS and HW/SW-RTOS are depicted by column bars. For
example, consequences of faults that affect services belonging to the synchro-
nization group are illustrated by second bar from right. On average 42.4% of
faults have no visible effects on the system behavior in SW-RTOS while san-
guinely this factor is 57.8% in HW/SW-RTOS. The application failure rate
in SW-RTOS composes 21.2% of total failure rate, but in HW/SW-RTOS
this fraction improves to 16.6%. Regarding to system crashes we can see a

c© IEICE 2007
DOI: 10.1587/elex.4.755
Received September 14, 2007
Accepted October 29, 2007
Published December 10, 2007

760



IEICE Electronics Express, Vol.4, No.23, 755–761

15% improvement in robustness due to SEs. Having shown in Figure 3 (c), all
services provided by HW/SW-RTOS are more robust than the same services
provide by SW-RTOS.

Figure 3 (a) and 3 (b) shows the effectiveness of HW/SW-RTOS services
in terms of reliability related to SE and the hardware overhead related to
different units of HW/SW-RTOS respectively. By resorting to Figure 3 (c),
we can see that both synchronization and time management services are
considerably improved. These improvements can be justified by dedicated
hardware synchronization part of our HW/SW-RTOS. The HW/SW-RTOS
implementation has about 18000 gates of hardware overhead as shown in
Figure 3 (d).

5 Conclusion

Real-time operating systems are subject to faults that affect both the cor-
rectness of logical results and the tasks’ response times. Hardware-Software
Real-Time Operating Systems seems to provide predictable response time at
an affordable cost. In this paper, we analyzed the effect of soft-errors in real-
time applications running under an RTOS which is implemented in HW/SW.
The experimental results show that SEs occurring in a real-time operating
system (either in SW or HW kernel) has a major impact on the system’s
behavior. The experimental results also show the robustness of HW/SW-
RTOS services in terms of SEs against SW-RTOS services. Due to dedicated
synchronization hardware, as experiments showed, we confidently obtained
considerable improvements in the robustness of synchronization services pro-
vided by HW/SW-RTOS versus SW-RTOS.

c© IEICE 2007
DOI: 10.1587/elex.4.755
Received September 14, 2007
Accepted October 29, 2007
Published December 10, 2007

761


