IEICE Electronics Express, Vol.5, No.9, 296-302

A hardware operating
system kernel for
multi-processor systems

Sanggyu Park®, Do-sun Hong, and Soo-Ik Chae

School of EECS, Seoul National University,

Building 104—1, Seoul National University, Gwanakgu, Seoul, 151-742, Korea
a) sanggyu@sdgroup.snu.ac.kr

Abstract: We propose a hardware operating system kernel (HOSK),
which schedules tasks, controls semaphores, and pre-fetches contexts,
as a hardware coprocessor in multiprocessor systems. A multiproces-
sor system can substantially reduce multithreading overheads by using
the HOSK together with simplified RISC processors that do not in-
clude hardware for multithreading. We implemented an efficient HOSK
which requires about 14 ~ 25K gates. The experimental results show
that the multithreading overheads with a HOSK can be reduced to
less than 1 percent. Preliminary efforts confirm that this approach is
a feasible solution for minimizing the hardware complexity of a multi-
processor system.

Keywords: multiprocessor, RISC, operating system, multithreading
Classification: Science and engineering for electronics

References

[1] Susanna Nordstrom, “Application Specific Real-Time Microkernel in
Hardware,” Proceedings of International Conference on Computer De-
signs: VLSI in computers and processors, pp. 333-336, 2005.

[2] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, and M. Imai, “Hardware
Implementation of a real-time operating system,” Proceedings of the 12th
International Symposium on TRON Project, pp. 34—42, 1995.

[3] P. Kohout, B. Ganesh, and B. Jacob, “Hardware Support for Real-time
Operating Systems,” Proceedings of CODS-1555°03, pp. 45-51, 2003.

[4] MIPS Technologies, Inc., “How to Choose a CPU Core for Multi-CPI SOC
Designs,” [Online] http://www.mips.com, 2002.

[5] J. Tto, T. Nakano, Y. Takeuchi, and M. Imai, “Effectiveness of a High
Speed Context Switching Method Using Register Bank,” IEICE Trans.
Fundamentals, pp. 2661-2667, 1998.

[6] Kiyofumi Tanaka, “PRESTOR-1: A Processor Extending Multithreaded
Architecture,” Proceeding of the Innovative Architecture for Future Gen-
eration High-Performance Processors and Systems, pp. 91-98, 2005.

[7] Simon Segars, “The ARM9E Synthesizable Processor Family,” [Online]
http://www.arm.com, 1999.

296

IEICE Electronics Express, Vol.5, No.9, 296-302

1 Introduction

When a high-performance processor that meets the performance require-
ments of a system is not available, many designers prefer to employ mul-
tiple processors because their performance appears to be easily scaled up by
effectively integrating them. However, designing an efficient multiprocessor
system is not an easy task due to multithreading overheads.

Solutions for reducing such overheads, which were originally devised for
a single-processor system, are also useful for multi-processor systems. One
solution is to employ a hardware accelerated operating system coprocessor
that accelerates several operating system functions such as thread schedul-
ing, semaphore control, and queue management [1, 2, 3]. However, context
switching overheads cannot be reduced with the coprocessor because it can-
not directly access the processor’s internal registers. Another solution is to
employ hardware multi-threading processors such as MIPS 32 K®processors,
which support multiple contexts for fine-grain multithreading [4]. The num-
ber of contexts handled by a multithreading processor can be increased by
using context caches [5, 6].

In designing multi-processor systems, however, these solutions are less
attractive because they require substantial hardware overhead roughly equal
to or even larger than one simple RISC processor. Therefore, instead of
adopting such solutions, integrating an extra processor core could be a better
choice. Furthermore, a system-level operating system is still required to
suspend or wake up threads during inter-processor communications or to
distribute them among multiple processors.

In this paper, we propose a hardware operating system kernel coprocessor
that supports thread scheduling, inter-processor communication, and con-
text switching in hardware for area-efficient multi-processor systems. With
compact data structures and efficient hardware implementations of thread
scheduling and context switching, we implemented an efficient HOSK which
requires about 14 K ~ 25 K gates. By using the HOSK, multithreading over-
head in a multiprocessor system can be substantially reduced.

2 A HOSK coprocessor

Fig. 1 shows the block diagram of a multiprocessor system that consists of
multiple simplified processors and a HOSK coprocessor comprised of three
blocks: a main controller, a thread manager, and a context manager. The
main controller is connected to several processors through a co-processor bus
to receive system service requests. The main controller controls the other
blocks in the coprocessor. The thread manager schedules threads and controls
semaphore access. The context manager pre-fetches a context according to
the scheduling decision of the thread manager.

2.1 Thread manager
An operating system includes a queue for ready threads. In software operat-
ing systems, a ready queue is often implemented as a linked list. However,

297

IEICE Electronics Express, Vol.5, No.9, 296-302

context bus

— N
Simplified Context Context Buffer
RISC [RO | Context
a controller n Context 1 Memo
Simplified | | Simplified | | " L RT 1! anager v
RISC RISC Register File e
[R15 (PC) |
Processor Processor [RO] [REEC]
Datapath E——
Main Thread CoI:t?oI
Controller Manager > M
lemory
v v \ 4 2

coprocessor bus (or data bus)

Fig. 1. A multiprocessor system with multiple simplified
processors and a hardware operating system ker-
nel

it is not suitable for simple hardware implementation because priority sort-
ing is required for thread scheduling. For example, uTRON adopted a radix
sort algorithm for task scheduling. It stores priority values of all threads in
registers to complete scheduling in a few clock cycles [2], but it is not area-
efficient due to the high complexity of registers and multiplexers. Although
it is possible to store the priority values in more area-efficient memories such
as SRAM or SDRAM, the sort algorithm requires at least M - logy (Nayax)
memory accesses where M is the number of ready threads and Nyjax is the
maximum number of threads.

In multiprocessor systems using the HOSK, it is not necessary to make a
thread scheduler fast enough to be performed in several clock cycles because
it runs concurrently with the processors. Therefore, we substantially reduced
the complexity of the HOSK by storing the priority values in either SDRAM
or SRAM.

In the thread manager, we implemented a ready queue with a bit vector,
where its k-th bit represents whether a thread with identifier £ is ready to run
or not. Other information about a thread, which is represented with a thread
descriptor, is stored in the thread control memory, as shown in Figure 2.
Each thread descriptor contains four fields: N, NEXT, PRIO, and WCNT.
The priority of a thread is represented by two fields PRIO and WCNT, where
PRIO is assigned to the more significant bits. An invalid thread is represented
with a thread descriptor with PRIO value of zero. The N and NEXT fields
are used to implement wait queues, which will be explained later. The bit
width of PRIO is fixed to four in the current implementation and the bit
widths of the WCNT and NEXT fields are logy Npax, where Ny is the
maximum number of threads supported by a HOSK coprocessor.

For task scheduling, the thread manager scans the ready queue vector to
select a ready thread with the largest priority value. The PRIO field is not
modified during scheduling, but the WCNT field is updated for fair schedul-
ing. The thread manager sets the WCNT field of the selected thread to zero
and it increases the WCNT fields of the other threads with the same PRIO
value. If all threads in the ready queue have a positive WCNT value, the
thread manager decreases the WCNT value by one for each thread to prevent

298

IEICE Electronics Express, Vol.5, No.9, 296-302

o T+ 5 | TDESCO | | ..
‘ el TPESCT [N] NExT [PriO | wenr |
=T
[l o T 1] 3 L// SDESCO | |..
] T SDESC 1 |8 1o [vawe [g]
-"'".,. re
T T

Fig. 2. Structure of the thread control memory

overflow. With this scheduling algorithm, each task scheduling requires 2 - N
memory accesses where N is the number of ready threads.

The thread manager provides inter-processor communication services that
suspend or wake up threads. To make it simple, only semaphores are imple-
mented in hardware; and mutex and interrupt services are implemented using
the semaphores. For interrupt services, a semaphore is assigned to each in-
terrupt source so that its corresponding interrupt handler thread can wait
for it while a mutex is implemented as a binary semaphore with an initial
value of one.

The thread control memory also stores semaphore descriptors, each of
which has four fields: B, TID, VALUE, and E where B specifies whether it
is a counting semaphore or a binary semaphore, and E represents its validity
and VALUE means a signed semaphore value. When a thread waits for a
semaphore, the thread manager decreases the field VALUE by one. There-
fore, a negative value of this field means at least one thread is waiting for
this semaphore.

The thread manager allocates a wait queue for each semaphore, which
stores all the threads waiting for the semaphore. Note that priority sort-
ing is not essential for the wait queue because most semaphores have only
one waiting thread and the priorities of suspended threads are not changed.
Therefore, we implemented the wait queue as a linked list. The TID field in
a semaphore descriptor, which is valid only if the VALUE field has a negative
value, specifies the thread identifier of the first entry of the wait queue. The
N field of the thread descriptor is true if more entries are in the wait queue
and the NEXT field specifies the thread identifier of the next suspended
thread. The bit width of TDI is logy Npax and the bit width of VALUE is
(logy Nypax + 1).

The proposed thread manager is implemented area-efficiently in hard-
ware because of its simplicity. If the maximum thread count is 32, the task
scheduling requires 5-bit and 9-bit registers to store the identifier and priority
of the highest priority thread, and one 9-bit comparator to compare priorities
of threads, which corresponds to several hundreds gates. The thread control
memory is also small because only 15 and 13 bits are required for each thread
and each semaphore, respectively. Furthermore, the thread manager is de-
signed to access the thread control memory with one port so that the memory
can be implemented with a register file or an external SDRAM, which are
more area-efficient than registers.

299

IEICE Electronics Express, Vol.5, No.9, 296-302

2.2 Context Manager

The context manager stores the contexts of all threads in the context memory;,
whose size is equal to the maximum thread count times the size of a processor
context. Because of its large size, the context memory should be mapped to
an external SDRAM. The context manager includes a context buffer which
is an on-chip memory that holds the context of the scheduled thread or the
suspended thread. The context buffer is implemented with registers because
it is small.

As soon as the thread scheduler completes the task scheduling, the con-
text manager pre-fetches contexts of the scheduled thread from the context
memory to the context buffer. In this time, executions of currently run-
ning threads are not interfered by the context pre-fetching. The context
switching occurs when a processor core becomes idle or the priority of a pre-
fetched thread is higher than a running thread in a processor core. Because
the context switching is started after the context pre-fetch is completed, the
SDRAM access latencies can be hidden.

For hardware-based context switching, each processor should include a
context controller, which is connected to the context manager through the
context bus [5]. The context controller reads the register file in the processor
and writes context data to the context buffer in the context manager, and vice
versa. In a processor with multiple contexts, the context controller can switch
the context in the background without halting the running thread [5, 6]. In an
area-efficient processor with only one context, however, the context controller
should wait until all pipeline stages are emptied or completed before context
switching.

Here, we assume that a simplified 5-stage pipelined processor with 16
32-bit general purpose registers and one 32-bit system register is employed.
Before starting context switching, the context controller in the processor
invalidates the fetch and decode stages and it waits until all issued instruc-
tions in the other stages are completed. In the processor, all instructions are
completed in the execution stage except load instructions. To exploit this
feature, the context controller starts context switching at the time when
load/store instructions are not in the pipelines. The context manager com-
mands the instruction and data caches to pre-fetch instruction codes and
stack data so that the restored thread can be resumed without cache misses.
Moreover, the context manager exchanges the program counter (PC) first so
that instructions can be fetched and decoded during the context switching
to reduce the context switching latency.

The context switching latency depends on the width of the context bus.
If the context bus is a duplex 32-bit bus, it takes 17 ~ 20 cycles. Obviously,
the latency can be reduced by increasing the bit-width of the context bus. As
an extreme case, it only 4 clock cycles if the context bus is a duplex 544-bit
bus.

300

IEICE Electronics Express, Vol.5, No.9, 296-302

3 Experimental Results

To evaluate the HOSK, we also implemented an experimental simplified RISC
processor (REX) that adopts the ARM instruction set architecture, which has
only a 3-read and 2-write register file of 16 32-bit registers. Note that for
faster interrupt handling and system services, the register file in a conven-
tional ARM9 processor has additional 15 banked-registers. In the REX, the
complexity of an ALU and a load/store unit is less than 15 K gates and a con-
text with 544 bits requires about 10 K gates. The total complexity of a REX
is 25 K gates while those of fully synthesizable ARM7TDMI and ARM966ES
processors are 40 K and 90 K gates, respectively [7].

Table I summarizes the area of a HOSK processor for several configu-
rations, where the context memories are in the external SDRAM. In this
experiment, the thread control memories were implemented with registers,
register files and SDRAMs. Here, the maximum number of semaphores is 32
and the width of the context bus is 32 bits. When the thread control memory
is implemented with SDRAM, a HOSK for 32 threads requires about 14.3 K
gates, which is a little larger than the size of one context set. According to
the results in Table I, we found that a HOSK for up to 128 threads can be
implemented with reasonable complexity, compared to uTRON.

Table I. Area of the HOSK for different configurations

Maximum Area (in gates including memories except SDRAM)
Thread count Register Register File SDRAM uTRON [2]
16 22.6 K 16.5K 13.7K 40K
32 26.3 K 17.8K 14.3K 100K gates
64 32.7K 203K 14.8K 190K gates
128 459K 25.1K 159K N/A

We also compared the multithreading overheads for two cases: a REX
processor with the HOSK coprocessor and an ARM9 processor with a soft-
ware operating system kernel. In this experiment, a JPEG decoder is divided
into four concurrent threads, each of which is executed on a different proces-
sor. Results are shown in Table II. When the context switching interval is
larger than 1,000 cycles, the multi-threading overhead of the HOSK is about
1% while that of a software operating system kernel is about 32%. Moreover,
the HOSK can support task scheduling for the context switching intervals of
five hundred cycles with less than 4% overheads. Note that the HOSK pre-
fetches contexts from the context memory in the external SDRAM to the

Table II. Multi-threading overheads of hardware and soft-
ware operating systems

Context Hardware operating system Software
Switching |Duplex 32-bit context bus{Duplex 544-bit context bus| operating system
interval (cycles)| Register file| SDRAM |Register file| SDRAM |(ARMY processor)
10,000 0.18% 0.21% 0.04% 0.1% 2.93%
1,000 1.70% 1.75% 0.41% 0.51% 32.43%
500 3.61% 3.65% 0.83% 0.88% 71.23%

301

IEICE Electronics Express, Vol.5, No.9, 296-302

context buffer before switching the context. Therefore, the SDRAM access
latencies are perfectly hidden in this experiment.

4 Conclusion

In this paper, we proposed a hardware operating system kernel which is
useful for implementing area-efficient multi-processor systems. Thanks to
the HOSK, multi-threaded software programs can be distributed over sev-
eral simplified RISC processors with small performance overheads. To make
the HOSK simple, we defined compact data structures for the thread and
semaphore management and we employed a simple thread scheduling algo-
rithm whose hardware implementation is substantially simpler relative to
previous work. We think that the HOSK is also useful for hardware multi-
threaded processors because it can hold multiple context sets for several
processors and because it can efficiently balance dynamic work loads among
the processors. To confirm this, we are now improving the HOSK to support
hardware multi-threaded processors.

302

