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Abstract: In this paper, a new reverse converter for the moduli set
{2n−1, 2n, 2n+1, 2n+1−1} is presented. We improved a previously in-
troduced reverse converter architecture for deriving a high-speed hard-
ware design. Hardware architecture of the proposed converter is based
on adders, without the need for ROM or Multiplier. The presented
design resulted in a significant reduction in conversion delay in com-
parison to the last reverse converter for the moduli set {2n − 1, 2n,
2n + 1, 2n+1 − 1}.
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1 Introduction

One of the most effective ways for achieving parallelism on arithmetic level in
VLSI systems design is the use of residue number system (RNS) [1]. In RNS,
a weighted number is converted into a set of small residues. Since arithmetic
operations on residues can be performed without carry propagation between
residues, RNS leads to high-speed addition, subtraction and multiplication.
Today, RNS is used for reducing the power dissipation in high-performance
systems. RNS can tolerate a large reduction in the supply voltage comparing
to the corresponding binary architecture while achieving a particular delay
specification [2].

Each RNS system is based on a moduli set which consists of a set of
relatively prime integers. The dynamic range of an RNS system is defined
in terms of the product of the moduli, and it denotes the interval of integers
uniquely represented in RNS. Until now, many moduli sets with different
dynamic ranges have been proposed for RNS such as {2n, 22n − 1, 22n +
1} [3], {2n − 1, 2n, 2n + 1} [4], {22n−1, 22n+1 − 1, 22n+1 + 1} [5]. But, the
parallelism provided by these moduli sets is not appropriate for applications
which require large dynamic range with high parallelism. Hence, some four-
moduli sets such as {2n − 1, 2n, 2n + 1, 2n+1 + 1} and {2n − 1, 2n, 2n + 1,
2n+1 − 1} [6] have been introduced. Since, the largest modulo of the moduli
set {2n − 1, 2n, 2n +1, 2n+1 − 1} is in the form 2k − 1, it can results in faster
RNS arithmetic unit than {2n − 1, 2n, 2n + 1, 2n+1 + 1}. From the another
side, some of the multiplicative inverses of these four-moduli sets have an
inelegant forms, and this resulted in long conversion delay of the reverse
converters for these moduli sets. In this paper, we make some modifications
to the reverse converter of [6], and present a new hardware implementation
of the reverse converter for the moduli set {2n − 1, 2n, 2n + 1, 2n+1 − 1}.
The proposed reverse converter has much lower conversion delay than the
converter of [6].

In the rest of paper, the reverse converter of [6] is introduced in section 2.
In section 3, we propose the improvements on reverse converter of [6]. Section
5 evaluates the performance of the proposed reverse converter as well as the
other reverse converter, with regard to the conversion delay and hardware
complexity.

2 Mohan et al. reverse converter

Mohan et al. [6] used mixed-radix conversion (MRC) to derive a reverse con-
version algorithm for the moduli set {2n − 1, 2n, 2n + 1, 2n+1 − 1}. But,
MRC is a sequential process, and because of this their adder-based reverse
converter for the moduli set {2n − 1, 2n, 2n + 1, 2n+1 − 1} has long conver-
sion delay. As shown in Fig. 1, their converter architecture consists of many
modulo adders which implemented by using carry-propagate adders (CPAs)
with end-around carry (EAC). For reducing the conversion delay, they sub-
stituted one part of converter with ROM, and derived a ROM-based reverse
converter. Although, the ROM-based converter of [6] has less conversion de-
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Fig. 1. The reverse converter architecture of [6]

lay than the corresponding adder-based architecture but with increasing the
value of n, the ROM size grows exponentially, and this leads to increasing
the cost of reverse converter.

3 The proposed improvements

The main reason for long conversion delay of the adder-based reverse con-
verter of [6] is the modulo (2n+1−1) adder that followed by a (3n+1)-bit CPA
(demonstrated within the dotted lines in Fig. 1). Hence, we are motivated
to substitute this part with other hardware components for decreasing the
total conversion delay of the reverse converter. The authors of [6] calculated
the most significant bits (MSBs) of the final weighted number as:

BH1 = U1
∗(22n − 1) + X(3n−1) ··· n. (1)

In [6], an (n + 1)-bit CPA2 with EAC is used for performing the modulo
(2n+1 − 1) addition of the binary vectors P1 and P2 (as shown in Fig. 1,
we named the inputs of CPA2 as P1 and P2). Next, a (3n + 1)-bit CPA3
used for calculation of Eq. (1). The main idea is based on the fact that it is
not essential to calculate BH1 directly by a (3n + 1)-bit CPA3. But, we can
consider BH1 as three independent binary vectors P3, P4 and P5. Then, we
calculate these numbers in a parallel architecture.

First, Eq. (1) can be computed by adding the following binary vectors

X(3n−1) ··· n : 0 0 · · · 0 0 X3n−1 X3n−2 X3n−3 · · · X2n+1 X2n X2n−1 · · · Xn+1 Xn

U122n : u1n u1(n−1) · · · u11 u10 0 0 0 · · · 0 0 0 · · · 0 0
−U1 : 0 0 · · · 0 0 0 0 0 · · · 0 −u1n −u1(n−1) · · · −u11 −u10

(2)
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These can be compressed as:

u1n u1(n−1) · · · u11 u10 X3n−1 X3n−2 X3n−3 · · · X2n+1 X2n X2n−1 · · · Xn+1 Xn

0 0 · · · 0 0 0 0 0 · · · 0 −u1n −u1(n−1) · · · −u11 −u10

(3)
U1 is the result of modulo (2n+1 − 1) addition of P1 and P2, and it can be
obtained as:

U1 =

{
P1 + P2 if P1 + P2 < 2n+1 − 1
P1 + P − 2n+1 + 1 if P1 + P2 ≥ 2n+1 − 1

(4)

Hence, instead of direct performing modulo addition, we can substitute the
value of (4) in (3). With performing this, the three parts of BH1 can be
formulated as

P3 =

{
X2n···n + P̄1 + P̄2 + 2 if P1 + P1 < 2n − 1
X2n···n + P̄1 + P̄2 + 2 + (2n+1 − 1) if P1 + P1 ≥ 2n − 1

(5)

P3 is an (n + 3)-bit number. The first (n + 1) bits of P3 forms the least
significant (n+1) bits of BH1, and the last two bits of P3 will be used in the
next stage for computing P4 as

P4 = X3n−2···2n+1 − P3(n+2)P3(n+1) (6)

Since P3(n+2)P3(n+1) can only have one of the values 0,1 and 2, we can rewrite
the Eq. (6) as below

P4 =

⎧⎪⎨
⎪⎩

X3n−2···2n+1 if P3(n+2)P3(n+1) = 0
X3n−2···2n+1 − 1 if P3(n+2)P3(n+1) = 1
X3n−2···2n+1 − 2 if P3(n+2)P3(n+1) = 2

(7)

The MSB of P4 will be used in the next stage for calculating P5, and the
remaining (n − 1) bits of P4 forms the middle bits of BH1. Finally, P5 (the
most significant (n + 1) bits of BH1) can be evaluated as follow

P5 =
(
(P1 + P2) mod 2n+1 − 1

)
− P4n (8)

P5 =

{
P1 + P2 − P4n if P1 + P2 < 2n − 1
P1 + P2 − P4n − (2n+1 − 1) if P1 + P2 ≥ 2n − 1

(9)

P5 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P1 + P2

{
P1 + P2 if P1 + P2 < 2n+1 − 1 and P4n = 0
P1 + P2 − 1 if P1 + P2 < 2n+1 − 1 and P4n = 1

P1 + P2 + 1 − 2n+1

{
P1 + P2 + 1 − 2n+1 if P1 + P2 ≥ 2n+1 − 1 and P4n = 0
P1 + P2 + 1 − 2n+1 − 1 if P1 + P2 ≥ 2n+1 − 1 and P4n = 1

(10)
It should be noted that, −2n+1 in (10) only changes the most significant bits
of P5, and since the most significant bit of P5 will be ignored, we don’t take
into account the −2n+1 in computing the value of P5. Hence, Eq. (10) can
be rewritten as

P5 =

⎧⎪⎨
⎪⎩

P1 + P2 if (P1 + P2 < 2n+1 − 1 and P4n = 0) OR (P1 + P2 ≥ 2n+1 − 1 and P4n = 1)
P1 + P2 − 1 if P1 + P2 < 2n+1 − 1 and P4n = 1
P1 + P2 + 1 if P1 + P2 ≥ 2n+1 − 1 and P4n = 0

(11)
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Example: Consider the following values

n = 3, P1 = 0101, P2 = 1000 and X(3n−1)···n = 000111

First, using Mohan et al. method [6], we have

U1 = 1101

BH1 = U1
∗(22n − 1) + X(3n−1)···n

BH1 = 1101∗(111111) + 000111 = 826

Now, by using the proposed method BH1 can be efficiently obtained as follow:
{

P1 + P2 = 01101
P1 + P2 + 1 = 01110

⇒ COut=0

COut=0 ⇒ P3 = X2n···n + P̄1 + P̄2 + 2 = 0111 + 1010 + 0111 + 10 = 11010

(P3(n+1) = 1, P3(n+2) = 0, COut = 0) ⇒ P4 = x(3n−1)···(2n+1)−1 = 00−1 = 011

(P3(2n+1) = 0, COut = 0) ⇒ P5 = P1 + P2 − 1 = 0101 + 1000 − 1 = 1100

Fig. 2 shows hardware implementation of the proposed improvements.
The architecture is based on Eqs. (5), (7) and (11). Implementation of (5)
relies on an (n + 1)-bit carry-save adder (CSA) followed by two CPAs. It
should be noted that, CPA4 includes only (n + 3) half adders (HAs). Also,
CPA3 and CPA4 function in a bit level parallel architecture. Therefore, the
total delay of CPA3 plus CPA4 is (n+2)tFA +tHA, where tFA and tHA denote
the delay of a full adder (FA) and HA, respectively.

Next, for realization of (7) two (n − 1)-bit CPAs are used. Finally, Im-
plementation of (10) has been done by three (n + 1)-bit CPAs. Also, the
carry-outs of CPA7 and CPA8 are used for detecting P1 + P2 ≥ 2n+1 − 1. If
Cout is zero, the value of P1 plus P2 is smaller than 2n+1 − 1, and whenever
Cout is one, we have P1 + P2 ≥ 2n+1 − 1. The Cout used for selecting the
correct values of multiplexers (MUXs).

Fig. 2. Hardware implementation of the proposed im-
provements
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4 Performance Evaluation

The proposed reverse converter consists of two level. The first level is the
same as the first part of the converter of [6], and composed of a three-modulus
reverse converter for calculating X(3n−1)...0, two (n+1)-bit CSAs, an (n+1)-
bit CPA1 with EAC and a CSA tree (these components showed in Fig. 1,
outside the dotted lines). The second level of the presented reverse converter
substituted the components which showed within the dotted lines in Fig. 1,
with those showed in Fig. 2.

The total conversion delay of the presented reverse converter is the delay
of first level plus the delay of second level. The delay of the first level is the
same with the first level of the converter of [6]. The critical delay path of the
second level (Fig. 2) consists of an (n + 1)-bit CSA4, CPA2, CPA3, an FA
and MUX 1, 2, 3.

Tab. I presents the total conversion delay and hardware complexity of the
reverse converters. In this table, the unit gate model [3, 5] used to derive
total area and delay estimations. In this model, each two-input monotonic
gate, an XOR/XNOR gate and an FA counts as one, two and seven gates in
area, respectively. Moreover, each FA has the delay of four unit gates. Also,
the time complexity is the product of the total unit gate area and delay.
As seen from Tab. I, the proposed adder-based reverse converter for moduli
set {2n − 1, 2n, 2n + 1, 2n+1 − 1} is faster than original work. However,
the hardware cost of the presented converter is more. But it is essential to
remark to the point that, although the proposed converter consume more
hardware but it demonstrated significant improvement in terms of speed and
time complexity.

Table I. Performance Comparison

5 Conclusion

This paper presents an improved reverse converter for the well-known RNS
moduli set {2n − 1, 2n, 2n + 1, 2n+1 − 1}. The hardware architecture of
the proposed converter consists of two levels. The first level is the same as
the first level of the original reverse converter. The second level composed of
regular binary adders, without the need for using modular adders. Hence, the
presented reverse converter results in significant reduction in the conversion
delay and time complexity, compared to the original work.c© IEICE 2008
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