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Abstract: This paper presents an efficient extended linear convolu-
tion interpolation method for efficient scaling. The kernel of the ex-
tended linear convolution interpolation is built up of first-order polyno-
mial and approximates the ideal sinc-function in interval [−2, 2]. The
approach reduces the computational complexity of interpolation and
the interpolation quality is compatible to that of bi-cubic convolution
interpolations.
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1 Introduction

Digital image scaling has a variety of applications, such as multimedia, medi-
cal image processing, military applications and consumer electronics. Numer-
ous digital image scaling techniques have been presented [1, 2, 3, 4, 5, 6, 7, 8].
The simplest approaches are nearest neighbor and bi-linear interpolation [1];
however, they have undesirable blocks effect and blurring effect. A bet-
ter quality of interpolation is achieved by using higher order models [1, 2].
The typical method of this category is cubic convolution interpolations [3, 4,
5, 6, 7, 8]; nevertheless, it requires heavy computations. Therefore, Nuno-
Maganda [7] decomposed the bi-cubic method into two 1-dimension interpo-
lations on a Xilinx Virtex II Pro FPGA for real-time processing.

The kernel of cubic convolution interpolations is built up of third-order
polynomials [4, 5, 6, 7] and approximates the ideal sinc-function in inter-
val [−2, 2]. The kernel is given by

kC(d) =

⎧⎪⎨
⎪⎩

(c + 2)|d|3 − (c + 3)|d|2 + 1, 0 ≤ |d| < 1
c × |d|3 − 5c × |d|2 + 8c × |d| − 4c, 1 ≤ |d| < 2
0, 2 ≤ |d|.

(1)

Bi-cubic [4] interpolation applies a widely used constant c = −1 as a com-
promise approximation to the ideal sinc-function. The kernel of bi-cubic
interpolation is given by

kBC(d) =

⎧⎪⎨
⎪⎩

1 − 2 |d|2 + |d|3 , 0 ≤ |d| < 1
4 − 8 |d| + 5 |d|2 − |d|3 , 1 ≤ |d| < 2
0, 2 ≤ |d| .

(2)

This paper presents an efficient image scaling method, extended linear inter-
polation. The scheme has the advantages of low operation complexity with
its interpolation quality compatible to that of bi-cubic convolution interpo-
lation.

2 The kernel of extended linear convolution interpolation

Extended linear convolution interpolation improves the quality of linear in-
terpolation and moreover, has the advantage of low complexity as linear
interpolation. The number of sampling points of third-order polynomial in-
terpolation [2] is applied in extended linear convolution interpolation, which
decomposes 2-dimension 4×4 interpolations as two 1-dimensions. In addi-
tion, the sampling points of extended linear convolution interpolation uses
16 points as illustrated in Fig. 1(a). The proposed method approximates thec© IEICE 2008
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Fig. 1. (a) Decomposition of 2-dimension 4×4 interpola-
tions as vertical and horizontal interpolation (b)
1-dimension of third-order polynomial interpola-
tion (vertical interpolation).

ideal sinc-function in the interval [−2, 2]. The weighting coefficients are given
by

kEL(d) =

⎧⎪⎨
⎪⎩

c10 |d| + c00, 0 ≤ |d| < 1
c11 |d| + c01, 1 ≤ |d| < 2
0, 2 ≤ |d| .

(3)

In eq. (2), bi-cubic interpolation has feature [2] as following to derive the
kernel of extended linear interpolation; since kBC(d) is an even function, only
values for d ≥ 0 are discussed.

Separated bi-cubic interpolation is a 1-dimension of third-order polyno-
mial interpolation; the interpolated pixel (P ) can be obtained from corre-
sponding source pixels as shown in Fig. 1(b). The feature of weighting coeffi-
cients of separated bi-cubic interpolation in both directions can be obtained
by the equation:

kEL(d0) + kEL(1 + d0) = 1 − d0 (4)

1. According to eq. (4), substitute d = 1 into eq. (3), then c01 + c11 = 0;
assume c11 = α, then c01 = −α.

2. According to 1, replace d = 0 into eq. (3), then c00 + c01 + c11 = 1; that
is, c00 = 1.

3. Based on 1, replace d = 0.5 into eq. (3), then c10 = −1 − c11; that is,
c10 = −(α + 1).

Thus, eq. (3) can be expressed as

kEL(d) =

⎧⎪⎨
⎪⎩

−(α + 1) × |d| + 1, 0 ≤ |d| < 1
α × |d| − α, 1 ≤ |d| < 2
0, 2 ≤ |d| ,

(5)

where α is sharpness factor.
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Fig. 2. The weighting coefficient generator.

3 Optimal sharpness factor

In order to obtain the sharpness factor which has the best interpolation
quality, the sum of standard deviation is applied to determine the value of
α, between −1 and 0, whose spectrum mostly approximates the ideal sinc-
function. It shows that the minimum standard deviation occurs at α =
−0.1216. Instead of using α value that has the best quality, for simplicity’s
sake, we choose α = −0.125, which is close to −0.1216. The weighting
coefficients of extended linear interpolation equation is

kEL−0.125(d) =

⎧⎪⎨
⎪⎩

−0.875 × |d| + 1, 0 ≤ |d| < 1
−0.125 × |d| + 0.125, 1 ≤ |d| < 2
0, 2 ≤ |d| .

(6)

The frequency response on the spectrum for α = −0.1216 and α = −0.125
are very close to that of bi-cubic interpolation except that the high-frequency
response is a bit higher when α = −0.1216 and α = −0.125. Thus, the
interpolation quality for α = −0.1216 and α = −0.125 is approximately
equal to that of bi-cubic interpolation. From the hardware implementation
point of view, α = −0.125 is an optimal point to obtain good interpolation
quality. The advantage of α = −0.125 is that in hardware implementation
the multiplication with distance d can be accomplished by shifting d to the
right for 3 bits, instead of using a multiplier.

In a 1-dimensional interpolation, vertical and horizontal weighting coef-
ficients have to be determined. The method of calculating vertical weighting
coefficients is identical to the way of obtaining horizontal weighting coeffi-
cients. According to Fig. 1(b), eq. (6) can be modified to find all the vertical
weighting coefficients.

wi = −0.125 × d0

wi+1 = ((−wi) − d0) + 1
wi+2 = d0 + (−wi+3)
wi+3 = −(0.125 − (wi))

(7)

where wi, wi+1, wi+2, and wi+3 are the vertical weighting coefficients of
the corresponding source pixels Ai,j , Ai+1,j , Ai+2,j , and Ai+3,j ; d0 is the
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Table I. PSNRs of various scaling methods.

distance between the source pixel Ai+1,j and the virtual interpolated pixel
Pj . According to eq. (7), the weighting coefficient generator, as depicted in
Fig. 2, is designed for producing vertical or horizontal weighting coefficients.
The complex operation is simplified in the generator, which includes only two
adders and two subtractors.

4 Experimental results

The proposed method was coded in C++ and executed on a personal com-
puter. To evaluate the performance of scaling, eight test images (512×512)
used in the simulations are Tank, Sailboat, Boat, Bridge, Goldhill, Lena,
Peppers, and Airplane. The performance of the proposed method with that
of Bi-cubic is compared. The simulation results, shown in Table I, indicate
that the proposed method presents a quality that is compatible to that of
bi-cubic convolution interpolation. The kernel of the proposed method is
built up of first-order polynomial interpolation; it presents a lower computa-
tion complexity of interpolation than Nuno-Maganda [7]. Nuno-Maganda [7]
uses 12 multipliers and 12 adders to generate weighting coefficients and 20
multipliers and 12 adders for each convolution operation. With compatible
image quality, the proposed method applies 4 adders to generate weighting
coefficients and 8 multipliers and 6 adders for each convolution operation;
our approach reduces about 70% of hardware cost.

5 Conclusions

This paper presented an efficient extended linear interpolation for digital im-
age processing. Unlike bi-cubic convolution interpolations, whose weighting
coefficients are generated with heavy computation, the kernel of the proposed
method is built up of piecewise linear polynomials and approximates the ideal
sinc-function in interval [−2, 2]. This approach reduces the computation ef-
forts of interpolation. Thus, it can reduce the hardware complexity and is
capable of obtaining compatible quality of bi-cubic convolution interpolation.
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