
IEICE Electronics Express, Vol.5, No.22, 921–926

Self-configuring spiking
neural networks

Jose L. Rossellóa), Ivan de Paúl, and Vincent Canals
Electronics Systems Group, Balearic Islands University

Cra. Valldemossa km. 7.5, Palma de Mallorca 07122, Balearic Islands, Spain

a) j.rossello@uib.es

Abstract: We present a simple architecture for Spiking Neural Net-
works self-configuration. It consists in the hardware implementation
of a simple Genetic Algorithm that may be used to obtain optimum
network configurations. The proposed solution is applied to estimate
the processing efficiency of different networks. Based on the results we
develop a new performance metric to calibrate the processing capacity
of SNNs.
Keywords: neural networks, spiking neural networks, hardware im-
plementation of genetic algorithms
Classification: Photonics devices, circuits, and systems

References

[1] R. Malaka and S. Buck, “Solving nonlinear optimization problems using
networks of spiking neurons,” Proc. Int. Joint Conf. on Neural Networks,
vol. 6, pp. 486–491, 2000.

[2] D. M. Sala and K. J. Cios, “Solving graph algorithms with networks of
spiking neurons,” IEEE Trans. Neural Netw., vol. 10, no. 4, pp. 953–957,
July 1999.

[3] W. Gerstner and W. M. Kistler, Spiking neuron models, Cambridge Uni-
versity Press, 2002.

[4] N. Langlois, P. Miche, and A. Bensrhair, “Analogue circuits of a learning
spiking neuron model,” Proc. Int. Joint Conf. on Neural Networks, vol. 4,
pp. 485–489, 2000.

[5] T. Dowrick, S. Hall, L. McLaid, U. Buiu, and P. Kelly, “A biologically
plausible neuron circuit,” Proc. Int. Conf. on Neural Net., Orlando, USA,
pp. 715–719, 2007.

[6] M. J. Pearson, C. Melhuish, A. G. Pipe, M. Nibouche, I. Gilhesphy, K.
Gurney, and B. Mitchinson, “Design and FPGA implementation of an em-
bedded real-time biologically plausible spiking neural network processor,”
Proc. Int. Conf. on Field Programmable App., pp. 582–585, 2005.

[7] H. Torikai, A. Funew, and T. Saito, “Aproximation of spike-trains by
digital spiking neuron,” Proc. of Int. Joint Conf. on Neural Net., Orlando,
USA, pp. 2677–2682, 2007.

c© IEICE 2008
DOI: 10.1587/elex.5.921
Received September 06, 2008
Accepted October 17, 2008
Published November 25, 2008

921



IEICE Electronics Express, Vol.5, No.22, 921–926

1 Introduction

Practical hardware implementation of large neural systems is one of the ma-
jor challenges for science and technology. Due to their parallel-processing
nature, among other applications, neural systems can be used for real-time
pattern recognition tasks and to provide quick solutions for complex problems
that are intractable using traditional digital processors [1, 2]. The distributed
information processing of Neural Networks also enhances fault tolerance and
noise immunity with respect to traditional sequential processing machines.
Although all these processing advantages, one of the main problems of deal-
ing with neural systems is the achievement of optimal network configurations
since the network complexity increases exponentially with the total number
of neuron connections. Therefore, the development of learning strategies to
quickly obtain optimum solutions when dealing with huge network config-
uration spaces is of high interest for the research community. The use of
useful metrics to measure the network processing capacity is also of high im-
portance. Therefore, a generic network processing metric would be ideal to
compare different types of neural architectures or learning strategies.

Recently, a lot of research has been focused on the development of Spik-
ing Neural Networks (SNN) [3] as they are closely related to real biological
systems. In SNN information is codified in the form of voltage pulses called
Action Potentials (APs). At each neuron cell the AP inputs are weighted and
integrated in a single variable defined as the Post-Synaptic-Potential (PSP).
The PSP is time dependent and decays when no APs are received. When
input spikes excite the PSP of a neuron sufficiently so that it is over a certain
threshold, an Action Potential is emitted by the neuron and transmitted to
the rest of the network.

Different methodologies have been developed to implement SNNs using
analogue [4, 5] and digital circuitry. Digital solutions [6, 7] provide lower de-
sign costs, and simpler configurability while the total design cycle is shorter
since digital systems are easily configured and modified using FPGA plat-
forms.

In this work we present a digital implementation of SNN. We also de-
velop a simple architecture that can be used for SNN self-configuration. The
proposed self-learning solution has been applied for temporal pattern recog-
nition. We also propose a new generic metric to estimate the processing
capacity of neural systems. The rest of this paper is organized as follows: in
section 2 we show the proposed SNN self-learning architecture, while in sec-
tion 3 we apply the proposed system to temporal pattern recognition analysis.
We also present a new metric to estimate the network processing capacity.
Finally in section 4 we present the conclusions.

2 Digital SNN architecture

As mentioned in the previous section, in SNN the information is codified in
the form of pulses. We used a simplified digital implementation of the real
behavior of biological neurons. In the proposed system, the PSP decay after

c© IEICE 2008
DOI: 10.1587/elex.5.921
Received September 06, 2008
Accepted October 17, 2008
Published November 25, 2008

922



IEICE Electronics Express, Vol.5, No.22, 921–926

Fig. 1. Block structure for the dynamic configuration of
SNN. The GAC block is used for the network con-
figuration while the FC block evaluates the net-
work efficiency.

each input spike is selected to be linear instead of the real non-linear vari-
ation while the refractory period present after each spike emission has been
neglected. The main objective of this work is not to provide an exact copy of
the real behavior of biological systems but to develop a useful Neural Network
configuration technique and a generic performance estimation metric.

In the digital version implemented the PSP is codified as a digital num-
ber. At each spike integration the PSP is increased a fixed value that depends
on the type and the strength of the connection. Therefore, positive (nega-
tive) increment values are associated to excitatory (inhibitory) connections.
Each neuron is implemented using a VHDL code in which the connection
strength is selected to be a fraction of the neuron threshold (in particular,
these fractions are selected to be ±2/5 and ±1/10).

The proposed self-learning architecture is very simple as shown in Fig. 1.
It consists in two basic blocks, a Genetic Algorithm Circuitry (GAC) and
a Fitness Circuitry (FC). The GAC generates new configurations based on
the better configuration obtained, that is stored in the configuration regis-
ter. Using a Random Number Generator (RNG) (in this work we used an
LFSR digital circuit) a random mutation vector is generated. The mutation
vector is operated using XOR gates with the better configuration found un-
til the moment (placed in the configuration register). The result is a new
configuration (binary output of XOR block) that is equal to the previous
except in those cases where the RNG provides a HIGH state. The new con-
figuration is directly applied to the SNN when the controlling signal of the
GAC multiplexer (SL) is HIGH (self-learning selection). When signal SL is
LOW (operation mode) the better configuration obtained until that moment

c© IEICE 2008
DOI: 10.1587/elex.5.921
Received September 06, 2008
Accepted October 17, 2008
Published November 25, 2008

923



IEICE Electronics Express, Vol.5, No.22, 921–926

Fig. 2. A complete SNN implements all the possible inter-
neuron connections. Such networks are trained to
recognize temporal patterns

is applied to the SNN.
The FC block evaluates the aptness of each new configuration for a se-

lected network task. During the training mode an evaluation circuitry (EC)
compares the SNN behavior with the expected behavior, thus evaluating a
cost function (the configuration fitness). The value obtained in this process
is then compared to the one associated to the better configuration at the
moment (stored at the fitness register). When a better fitness is found, the
digital comparator output is set to a HIGH state and both the fitness and
the configuration registers are updated with the new configurations at the
end of the evaluation time.

When the system is in operation mode, the SNN configuration is fixed to
the better solution obtained at the moment. A global reset is used to start
with pre-selected initial conditions.

3 Neural processing capacity: the M-index

We applied the proposed SNN architecture to evaluate the processing be-
havior of various networks. The selected SNN task is the temporal pattern
recognition (that is directly related to the “memory” capacity of the system).
During the training mode, a finite sequence of vectors is applied repeatedly
at the SNN input (the training bit sequence) and the task of the network
consists in recognizing the sequence. At each time step the SNN has to pro-
vide the next bit of the sequence (see the illustration of Fig. 2). The network
efficiency is evaluated estimating the probability of the SNN prediction suc-
cess. At each evaluation step a mutated configuration provided by the GAC
is used to configure de SNN. The FC bloc evaluates the probability of suc-
cess of SNN predictions and the mutated configuration is therefore stored or
discarded (see Fig. 1).

We configured different networks containing three, four and five neurons,
each one connected to the rest of the network thus assembling a complete
topology. In Fig. 2 we show the case with three neurons (defined as a 3-SNN).

The training bit sequence must be as complex as possible to maximize

c© IEICE 2008
DOI: 10.1587/elex.5.921
Received September 06, 2008
Accepted October 17, 2008
Published November 25, 2008

924



IEICE Electronics Express, Vol.5, No.22, 921–926

Table I. Temporal recognition effectiveness of SNN (suc-
cess probability)

the pattern recognition difficulty. Therefore, we selected the generation of
pseudo-random strings provided by LFSR digital blocks. Pseudo-random bit
strings are characterized to have the same statistical properties as random
sequences with the only characteristic that pseudo-random sequences have a
periodicity. As is known, the periodicity of an LFSR constructed with ‘n’
registers is equal to N = 2n−1. In our experiment we used training sequences
of N = 7, 15, 31, 63, 127, 255, 511 and 1023 bits. With the selection of
this type of pseudo-random sequences, the memorization task difficulty is
maximized.

We applied each selected pseudo-random training sequence to three dif-
ferent SNN with complete topology (using 3, 4 and 5 neurons). Each SNN is
configured by the proposed genetic-based self-learning architecture. At each
time step, the network has to guess the next bit that will be provided by
the LFSR. Once the configuring circuitry has been stabilized to an optimum
configuration we evaluate the probability of success associated to this final
configuration. In Table I we provide the different prediction success (in per-
centage) for each network and training sequence together with the results
of the model explained next. It is observed that, as parameter N decreases
and as the number of neurons increases the network has a higher prediction
success.

From measurement data, we inferred a rule to estimate the prediction
success of each network. This rule is found to provide very close results to
the measured data as is shown in Table I. The rule is an analytical expression
that relates the success probability (p) to the training sequence length (N):

p =
1
2

+
2
5

√
M
N

(1)

where parameter M is dependent on the type of the network (number of
neurons, connection topology, etc.). For the networks trained we obtained
M=8.5, 10.5 and 12.5 for the 3-SNN, 4-SNN and 5-SNN networks respectively.
The expression in Eq. (1), indicates that as the length of the pseudo-random
sequence increases the success probability of the network decreases to the
limit value of 0.5 (50% of success probability).

The Parameter M (that we refer to as the network M-index) measures

c© IEICE 2008
DOI: 10.1587/elex.5.921
Received September 06, 2008
Accepted October 17, 2008
Published November 25, 2008

925



IEICE Electronics Express, Vol.5, No.22, 921–926

the ability of the system to recognize a pseudo-random bit sequence and
can be used to estimate the processing potential of the system. The SNN
M-index is defined as the maximum pseudo-random sequence length that the
network is able to recognize with a 90% success probability. This index is
a good indicator of the network processing capability, independently on the
type and topology of the selected neural system.

In Table I we compare the predictions of Eq. (1) with the measured data
showing a close relationship between measurements and the model developed.
The major discrepancy occurs for the 3-SNN when N = 7. This is due to
the fact that our model is continuous while the obtained success probability
is discrete. That is, the prediction success for N = 7 is always a rational
number with the denominator equal to 7. Therefore, the prediction of the
continuous model (a 94%) cannot be achieved by the real system that must
be 6/7 (the measured 86%) or 7/7.

4 Conclusions

In this work we propose a simple architecture for SNN self-configuration. The
proposed system implements in hardware a simplified genetic algorithm. We
applied the proposed architecture to temporal pattern recognition analysis.
Different pseudo-random sequences were applied to different networks and the
success probability was evaluated. It is shown that prediction success seems
to follow a law in which the success probability is inversely proportional to
the square root of the number of bits of the sequence. A new metric (the
network M-index) to estimate the processing capacity of neural systems has
been presented and evaluated. This metric may be used to any kind of neural
system and learning process.

Acknowledgments

This work was supported by the Balearic Islands Government in part by the
Regional European Development Funds (FEDER) under project PROGECIB-
32A.

c© IEICE 2008
DOI: 10.1587/elex.5.921
Received September 06, 2008
Accepted October 17, 2008
Published November 25, 2008

926


