
IEICE Electronics Express, Vol.5, No.22, 927–931

A low-cost recovery scheme
for dynamically scheduled
processors

Min Choia) and Seungryoul Maeng
Department of Electrical Engineering and Computer Science, KAIST

Guseong-dong, Yuseong-gu, Daejeon 305–701, Korea

a) min@kaist.ac.kr

Abstract: Although today’s branch predictors show high accuracy,
the branch misprediction penalty is getting larger due to aggressive
speculation and deeper pipelining. In order to reduce the miss penalty,
we propose a fast and low-cost branch recovery scheme using the incre-
mental register renaming (IRR) and the bit-vector based rename map
table (BVMT). The IRR enforces the destination register number of
the instruction stream to appear in non-decreasing order. With this in-
cremental property of the IRR, the BVMT recovery scheme completely
eliminates the roll-back overhead on branch misprediction. Thus, the
instruction fetcher does not stop and it fetches instructions from the
correct path immediately after the misprediction detected. The goal of
our scheme is to prevent a processor from flushing the pipeline, even
under branch misprediction. Consequently, the BVMT instantly recon-
structs the map table to any mispredicted branch and it outperforms
the conventional approach by an average of 10.93%.
Keywords: processor architecture, branch misprediction recovery,
bit-vector based rename map table
Classification: Integrated circuits

References

[1] H. Akkary, R. Rajwar, and S. Srinivasan, “Checkpoint Processing and
Recovery: Towards Scalable Large Instruction Window Processors,” IEEE
International Symposium on Microarchitecture (MICRO), pp. 423–434,
Dec. 2003.

[2] P. Ranganathan, V. Pai, and S. Adve, “Using Speculative Retirement and
Larger Instruction Windows to Narrow the Performance Gap between
Memory Consistency Models,” Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pp. 199–210, June 1997.

[3] P. Zhou, S. Onder, and S. Carr, “Fast Branch Misprediction Recovery
in Out-of-order Superscalar Processor,” Proceedings of the ACM Interna-
tional Conference on Supercomputing (ICS), June 2005.

[4] Synopsys Design Compiler 2007, [online] http://www.synopsys.com/
[5] J. Martinez, J. Renau, M. Huang, M. Prvulovic, and J. Torrelas, “Cherry:

Checkpointed Early Resource Recycling in Out-of-order Microprocessors,”
Proceedings of the IEEE/ACM International Symposium on Microarchi-c© IEICE 2008

DOI: 10.1587/elex.5.927
Received September 08, 2008
Accepted October 08, 2008
Published November 25, 2008

927



IEICE Electronics Express, Vol.5, No.22, 927–931

tecture (MICRO), 2002.

1 Introduction

Branch misprediction is one of the significant performance degradation con-
tributors in high-frequency deep pipeline superscalar processors. Improving
the accuracy of branch prediction has been a holy grail of the processor de-
signer. Yet, it is also important to reduce the misprediction recovery latency,
because this incurs “stalls” to repair the architecture state. The most critical
part of the architecture state is the register renaming map table, used for reg-
ister renaming to increase instruction level parallelism by removing false data
dependency. Several techniques have been proposed for efficient recovery such
as checkpoint processing and recovery [1], history buffer recovery [2], eager
misprediction recovery [3], etc. The key idea of these schemes is to maintain
an extra data structure for fast recovery, e.g., a history buffer. However, in
the worst case, these schemes require processing all the instances in the data
structure superseding the mispredicted branch. Thus, the worst case recovery
complexity of these schemes is O(n) where n is the number of such instances.
As pipelines are stretched, the recovery processing latency linearly increases,
causing non-trivial performance loss. The goal of this paper is to design a
fast, low-cost misprediction recovery mechanism. To this end, we propose a
register renaming policy called incremental register renaming (IRR). Then,
we propose a bit-vector based rename map table (BVMT) where each row
represents a mapping bit vector of an architectural register to the physical
registers. On a misprediction, a process can recover the rename map table
by simply resetting all the columns used by the instructions superseding a
mispredicted branch. Thus, we can achieve O(1) recovery complexity.

2 Incremental Register Renaming

We propose the IRR, a novel register renaming policy. The IRR is distinct
from conventional register renaming because it uses a different reclaiming
policy to rename registers. Although a recently freed physical register used
by a preceding instruction is available, the IRR does not reuse the register to
map the destination register of the next instruction. Instead, the IRR maps
architectural registers of each instruction to a rename register “sequentially”
as shown in Fig. 1. For example, given that the last mapped physical register
number is say 8, the destination register of a new instruction will be mapped
to the 9th physical register. In this way, the IRR enforces the destination
register numbers of an instruction stream to appear in the non-decreasing
order. As we will see, this incremental property of the IRR has a great
potential of eliminating the roll-back overhead on branch misprediction.

c© IEICE 2008
DOI: 10.1587/elex.5.927
Received September 08, 2008
Accepted October 08, 2008
Published November 25, 2008

928



IEICE Electronics Express, Vol.5, No.22, 927–931

3 The BVMT Structure

To handle recovery from branch mispredictions quickly and efficiently, we
modified the conventional rename map table structure to the BVMT. The
BVMT has head and tail pointers like a circular queue. The tail index is
incremented for a mapping in each instruction and similarly, the head index
is incremented when the instruction retires. Both indexes simply move to the
next column in the round-robin order driven by IRR, and thus a processor
will use a renamed register that corresponds to the index number of the tail
pointer in the BVMT. This is because a processor writes new register map-
pings sequentially to the tail of the BVMT. Fig. 1 demonstrates the update

Fig. 1. An example of incremental register renaming and
the usage of bit-vector based RMT

and recovery of the BVMT. In the BVMT structure, each row represents the
architectural register number and the bits in a column are translated to the
renamed register number. For the mapping of 1→8, for instance, we set a bit
on the 8th column of the first row. Let us say that the misprediction occurs
at “bgez,” then the processor just need to clean all bits after the 8th column,
since IRR guarantees that those mapping are only incorrect. The right-hand
side of Fig. 1 shows the third row of the BVMT. It represents the fact that
the architectural register 3 is mapped to the renamed register 3, initially.
After that, two subsequent instructions that need architectural register 3 use
the renamed register 9 and 10, respectively. The mapping to the 10 is the
latest mapping. The figure shows the state after the branch recovery of the
mispredicted branch, “bgtz”. Since the most up-to-date state of the map-
ping is from 3 to 3, last two subsequent mappings are squashed during the
recovery process. The BVMT can be simply realized using a priority decoder
that can translate the location of a bit to a physical register number. Here,
we use the general four 8 bit and one 4 bit priority decoders. We measured
the additional cost of the priority decoder in terms of power dissipation, area

c© IEICE 2008
DOI: 10.1587/elex.5.927
Received September 08, 2008
Accepted October 08, 2008
Published November 25, 2008

929



IEICE Electronics Express, Vol.5, No.22, 927–931

estimation, and access delay as shown in Table I. The supplementary logic
has been implemented with Verilog HDL and synthesized with the Synopsys
Design Compiler [4] targeted towards a 0.18µm TSMC library.

4 Result

The BVMT offers the following key advantages: update history preservation
and low-cost recovery. First, the update history in the BVMT is entirely
maintained within minimal storage overhead. We exploit the IRR to store
the new register mappings incrementally without replacing the previous map-
ping information. Thus, a processor can rollback to any register map table
state corresponding to a certain branch. Second, the BVMT minimizes the
reconstruction overhead of register map table; i.e., recovering the machine
state to the last consistent point of an exception or a branch misprediction.
The recovery of a BVMT can be completed in a short time by squashing the
column bit vectors of speculative instructions as of the mispredicted branch.
The squashing operation can be done instantly using inexpensive custom cir-
cuitry, such as gang-cleaning [5]. We perform extensive simulations using
the Spec CPU2000 benchmark suite on Simplescalar. Fig. 2 shows the per-
formance in terms of instructions per cycle (IPC) for integer and floating
applications respectively. From the figure, we see that the BVMT outper-

Fig. 2. IPC performance

forms the conventional rename map table (RMT) across all benchmarks by
10.93% on average. The RMT shows consistently better performance than
the history based (HB) method. The performance enhancement comes from
the fact that the BVMT method saves clock cycles to repair the map tables,
whereas the RMT and the HB require additional cycles for the map table
recovery ranging from a few cycles to tens of cycles. Moreover, the BVMT
is more effective for integer applications than for floating point applications
because floating-point applications have relatively better branch prediction
accuracies in most cases, and thus, branch misprediction occurs more fre-
quently in integer applications. In Table I, we provide complexity analysis
for map table operations. For a write operation at the commit stage, the HB
and the RMT have O(2) complexity because they both have to update not

c© IEICE 2008
DOI: 10.1587/elex.5.927
Received September 08, 2008
Accepted October 08, 2008
Published November 25, 2008

930



IEICE Electronics Express, Vol.5, No.22, 927–931

only the rename map table, but also the history buffer and the retirement
map table, respectively. However, the BVMT only has to clear only one bit,
resulting in O(1). For a recovery operation, the HB method pops all map-
pings from the HB and updates into the rename map table in reverse order.
Thus, in the worst case scenario all of the elements in the map table need
to be updated and the time complexity of the HB method is O(n). In the
RMT method, the retirement map table is copied to the frontend map table
when the mispredicted branch reaches the retire point. Therefore, the asymp-
totic time complexity of RMT method is O(n). However, in the BVMT, the
processor recovers the state by the gang-clear operation; i.e., all bits after
the position of the mispredicted branch are cleared at once, and thus, the
complexity is O(1).

Table I. Complexity Analysis and The BVMT Decoding
Overhead

BVMT Checkpoint HB RMT

Write at dispatch O(1) - O(1) O(1)
Write at commit O(1) - O(2) O(2)
Checkpoint O(1) O(n) - -
Recovery O(1) O(n) O(n) O(n)

Area Power Timing

Num. of ports 38 Dynamic 909.6226 µW Min 0.74 ns
Num. of nets 88 Leakage 2.5549 nW Max 1.49 ns
Num. of cells 56

5 Conclusion

In this paper, we prevent a processor from flushing the pipeline under branch
misprediction by allowing the instruction fetcher to work continuously. To
this end, we propose a fast and low-cost branch recovery scheme using incre-
mental register renaming and the BVMT. The proposed renaming method
can reconstructs the map table corresponding to any branch with the mini-
mum overhead of O(1) complexity. The overhead includes only the squashing
operation which can be done instantly using inexpensive custom circuitry. We
do not require extra overhead such as identifying speculative state. Thus, the
front-end can resume immediately after the recovery process with low cost.
Consequently, our approach enables the front-end to fetch instructions from
the correct path immediately after the misprediction detected.

Acknowledgments

This research was supported by the MKE(Ministry of Knowledge Economy),
Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute for Information Technology Ad-
vancement) (IITA-2008-C1090-0801-0045).c© IEICE 2008

DOI: 10.1587/elex.5.927
Received September 08, 2008
Accepted October 08, 2008
Published November 25, 2008

931


